123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- /*
- * By downloading, copying, installing or using the software you agree to this license.
- * If you do not agree to this license, do not download, install,
- * copy or use the software.
- *
- *
- * License Agreement
- * For Open Source Computer Vision Library
- * (3 - clause BSD License)
- *
- * Redistribution and use in source and binary forms, with or without modification,
- * are permitted provided that the following conditions are met :
- *
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and / or other materials provided with the distribution.
- *
- * * Neither the names of the copyright holders nor the names of the contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * This software is provided by the copyright holders and contributors "as is" and
- * any express or implied warranties, including, but not limited to, the implied
- * warranties of merchantability and fitness for a particular purpose are disclaimed.
- * In no event shall copyright holders or contributors be liable for any direct,
- * indirect, incidental, special, exemplary, or consequential damages
- * (including, but not limited to, procurement of substitute goods or services;
- * loss of use, data, or profits; or business interruption) however caused
- * and on any theory of liability, whether in contract, strict liability,
- * or tort(including negligence or otherwise) arising in any way out of
- * the use of this software, even if advised of the possibility of such damage.
- */
- #ifndef __OPENCV_XIMGPROC_HPP__
- #define __OPENCV_XIMGPROC_HPP__
- #include "ximgproc/edge_filter.hpp"
- #include "ximgproc/disparity_filter.hpp"
- #include "ximgproc/sparse_match_interpolator.hpp"
- #include "ximgproc/structured_edge_detection.hpp"
- #include "ximgproc/seeds.hpp"
- #include "ximgproc/segmentation.hpp"
- #include "ximgproc/fast_hough_transform.hpp"
- #include "ximgproc/estimated_covariance.hpp"
- #include "ximgproc/weighted_median_filter.hpp"
- #include "ximgproc/slic.hpp"
- #include "ximgproc/lsc.hpp"
- #include "ximgproc/paillou_filter.hpp"
- #include "ximgproc/fast_line_detector.hpp"
- #include "ximgproc/deriche_filter.hpp"
- #include "ximgproc/peilin.hpp"
- /** @defgroup ximgproc Extended Image Processing
- @{
- @defgroup ximgproc_edge Structured forests for fast edge detection
- This module contains implementations of modern structured edge detection algorithms,
- i.e. algorithms which somehow takes into account pixel affinities in natural images.
- @defgroup ximgproc_filters Filters
- @defgroup ximgproc_superpixel Superpixels
- @defgroup ximgproc_segmentation Image segmentation
- @defgroup ximgproc_fast_line_detector Fast line detector
- @}
- */
- namespace cv
- {
- namespace ximgproc
- {
- enum ThinningTypes{
- THINNING_ZHANGSUEN = 0, // Thinning technique of Zhang-Suen
- THINNING_GUOHALL = 1 // Thinning technique of Guo-Hall
- };
- /**
- * @brief Specifies the binarization method to use in cv::ximgproc::niBlackThreshold
- */
- enum LocalBinarizationMethods{
- BINARIZATION_NIBLACK = 0, //!< Classic Niblack binarization. See @cite Niblack1985 .
- BINARIZATION_SAUVOLA = 1, //!< Sauvola's technique. See @cite Sauvola1997 .
- BINARIZATION_WOLF = 2, //!< Wolf's technique. See @cite Wolf2004 .
- BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
- };
- //! @addtogroup ximgproc
- //! @{
- /** @brief Performs thresholding on input images using Niblack's technique or some of the
- popular variations it inspired.
- The function transforms a grayscale image to a binary image according to the formulae:
- - **THRESH_BINARY**
- \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
- - **THRESH_BINARY_INV**
- \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
- where \f$T(x,y)\f$ is a threshold calculated individually for each pixel.
- The threshold value \f$T(x, y)\f$ is determined based on the binarization method chosen. For
- classic Niblack, it is the mean minus \f$ k \f$ times standard deviation of
- \f$\texttt{blockSize} \times\texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$.
- The function can't process the image in-place.
- @param _src Source 8-bit single-channel image.
- @param _dst Destination image of the same size and the same type as src.
- @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- @param type Thresholding type, see cv::ThresholdTypes.
- @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- for the pixel: 3, 5, 7, and so on.
- @param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- the mean.
- @param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
- Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- @sa threshold, adaptiveThreshold
- */
- CV_EXPORTS_W void niBlackThreshold( InputArray _src, OutputArray _dst,
- double maxValue, int type,
- int blockSize, double k, int binarizationMethod = BINARIZATION_NIBLACK );
- /** @brief Applies a binary blob thinning operation, to achieve a skeletization of the input image.
- The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
- @param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
- @param dst Destination image of the same size and the same type as src. The function can work in-place.
- @param thinningType Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes
- */
- CV_EXPORTS_W void thinning( InputArray src, OutputArray dst, int thinningType = THINNING_ZHANGSUEN);
- /** @brief Performs anisotropic diffusian on an image.
- The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
- \f[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\f]
- Suggested functions for c(x,y,t) are:
- \f[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\f]
- or
- \f[ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \f]
- @param src Grayscale Source image.
- @param dst Destination image of the same size and the same number of channels as src .
- @param alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
- @param K sensitivity to the edges
- @param niters The number of iterations
- */
- CV_EXPORTS_W void anisotropicDiffusion(InputArray src, OutputArray dst, float alpha, float K, int niters );
- //! @}
- }
- }
- #endif // __OPENCV_XIMGPROC_HPP__
|