123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746 |
- #ifndef OPENCV_DNN_DNN_HPP
- #define OPENCV_DNN_DNN_HPP
- #include <vector>
- #include <opencv2/core.hpp>
- #if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
- #define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_v2 {
- #define CV__DNN_EXPERIMENTAL_NS_END }
- namespace cv { namespace dnn { namespace experimental_dnn_v2 { } using namespace experimental_dnn_v2; }}
- #else
- #define CV__DNN_EXPERIMENTAL_NS_BEGIN
- #define CV__DNN_EXPERIMENTAL_NS_END
- #endif
- #include <opencv2/dnn/dict.hpp>
- namespace cv {
- namespace dnn {
- CV__DNN_EXPERIMENTAL_NS_BEGIN
- typedef std::vector<int> MatShape;
-
- enum Backend
- {
- DNN_BACKEND_DEFAULT,
- DNN_BACKEND_HALIDE
- };
-
- enum Target
- {
- DNN_TARGET_CPU,
- DNN_TARGET_OPENCL
- };
-
- class CV_EXPORTS LayerParams : public Dict
- {
- public:
-
- std::vector<Mat> blobs;
- String name;
- String type;
- };
-
- class BackendNode
- {
- public:
- BackendNode(int backendId);
- virtual ~BackendNode();
- int backendId;
- };
-
- class BackendWrapper
- {
- public:
- BackendWrapper(int backendId, int targetId);
-
- BackendWrapper(int targetId, const cv::Mat& m);
-
- BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
- virtual ~BackendWrapper();
-
- virtual void copyToHost() = 0;
-
- virtual void setHostDirty() = 0;
- int backendId;
- int targetId;
- };
- class CV_EXPORTS ActivationLayer;
- class CV_EXPORTS BatchNormLayer;
- class CV_EXPORTS ScaleLayer;
-
- class CV_EXPORTS_W Layer : public Algorithm
- {
- public:
-
- CV_PROP_RW std::vector<Mat> blobs;
-
- virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
-
- virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals) = 0;
-
- CV_WRAP void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
-
- CV_WRAP std::vector<Mat> finalize(const std::vector<Mat> &inputs);
-
- CV_WRAP void forward(const std::vector<Mat> &inputs, CV_IN_OUT std::vector<Mat> &outputs,
- CV_IN_OUT std::vector<Mat> &internals);
-
- CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
- CV_IN_OUT std::vector<Mat> &internals);
-
- virtual int inputNameToIndex(String inputName);
-
- virtual int outputNameToIndex(String outputName);
-
- virtual bool supportBackend(int backendId);
-
- virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
-
- virtual void applyHalideScheduler(Ptr<BackendNode>& node,
- const std::vector<Mat*> &inputs,
- const std::vector<Mat> &outputs,
- int targetId) const;
-
- virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
-
- virtual bool setActivation(const Ptr<ActivationLayer>& layer);
-
- virtual bool setBatchNorm(const Ptr<BatchNormLayer>& layer);
-
- virtual bool setScale(const Ptr<ScaleLayer>& layer);
-
- virtual void unsetAttached();
- virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
- const int requiredOutputs,
- std::vector<MatShape> &outputs,
- std::vector<MatShape> &internals) const;
- virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
- const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;}
- CV_PROP String name;
- CV_PROP String type;
- CV_PROP int preferableTarget;
- Layer();
- explicit Layer(const LayerParams ¶ms);
- void setParamsFrom(const LayerParams ¶ms);
- virtual ~Layer();
- };
-
- class CV_EXPORTS_W_SIMPLE Net
- {
- public:
- CV_WRAP Net();
- CV_WRAP ~Net();
-
- CV_WRAP bool empty() const;
-
- int addLayer(const String &name, const String &type, LayerParams ¶ms);
-
- int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms);
-
- CV_WRAP int getLayerId(const String &layer);
- CV_WRAP std::vector<String> getLayerNames() const;
-
- typedef DictValue LayerId;
-
- CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
-
- std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId);
-
- CV_WRAP void deleteLayer(LayerId layer);
-
- CV_WRAP void connect(String outPin, String inpPin);
-
- void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
-
- CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
-
- CV_WRAP Mat forward(const String& outputName = String());
-
- CV_WRAP void forward(std::vector<Mat>& outputBlobs, const String& outputName = String());
-
- CV_WRAP void forward(std::vector<Mat>& outputBlobs,
- const std::vector<String>& outBlobNames);
-
- CV_WRAP void forward(std::vector<std::vector<Mat> >& outputBlobs,
- const std::vector<String>& outBlobNames);
-
-
- void forwardOpt(LayerId toLayer);
-
- void forwardOpt(const std::vector<LayerId> &toLayers);
-
- CV_WRAP void setHalideScheduler(const String& scheduler);
-
- CV_WRAP void setPreferableBackend(int backendId);
-
- CV_WRAP void setPreferableTarget(int targetId);
-
- CV_WRAP void setInput(const Mat &blob, const String& name = "");
-
- CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
-
- CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
-
- CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
-
- CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
-
- CV_WRAP void getLayersShapes(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
-
- void getLayerShapes(const MatShape& netInputShape,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const;
-
- void getLayerShapes(const std::vector<MatShape>& netInputShapes,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const;
-
- CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
-
- CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
-
- CV_WRAP int64 getFLOPS(const int layerId,
- const std::vector<MatShape>& netInputShapes) const;
-
- CV_WRAP int64 getFLOPS(const int layerId,
- const MatShape& netInputShape) const;
-
- CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
-
- CV_WRAP int getLayersCount(const String& layerType) const;
-
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
-
- CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
-
- CV_WRAP void getMemoryConsumption(const int layerId,
- const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
-
- CV_WRAP void getMemoryConsumption(const int layerId,
- const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
-
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const;
-
- void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const;
-
- CV_WRAP void enableFusion(bool fusion);
-
- CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
- private:
- struct Impl;
- Ptr<Impl> impl;
- };
-
- class CV_EXPORTS_W Importer : public Algorithm
- {
- public:
-
- CV_DEPRECATED CV_WRAP virtual void populateNet(Net net) = 0;
- virtual ~Importer();
- };
-
- CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
-
- CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());
-
- CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
-
- CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
-
- CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true);
-
- CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTensorflowImporter(const String &model);
-
- CV_DEPRECATED CV_EXPORTS_W Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);
-
- CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
-
- CV_EXPORTS_W Mat blobFromImage(const Mat& image, double scalefactor=1.0, const Size& size = Size(),
- const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
-
- CV_EXPORTS_W Mat blobFromImages(const std::vector<Mat>& images, double scalefactor=1.0,
- Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=true, bool crop=true);
-
- CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst);
- CV__DNN_EXPERIMENTAL_NS_END
- }
- }
- #include <opencv2/dnn/layer.hpp>
- #include <opencv2/dnn/dnn.inl.hpp>
- #endif
|