123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_SIMPLE_COLOR_BALANCE_HPP__
- #define __OPENCV_SIMPLE_COLOR_BALANCE_HPP__
- /** @file
- @date Jun 26, 2014
- @author Yury Gitman
- */
- #include <opencv2/core.hpp>
- namespace cv
- {
- namespace xphoto
- {
- //! @addtogroup xphoto
- //! @{
- /** @brief The base class for auto white balance algorithms.
- */
- class CV_EXPORTS_W WhiteBalancer : public Algorithm
- {
- public:
- /** @brief Applies white balancing to the input image
- @param src Input image
- @param dst White balancing result
- @sa cvtColor, equalizeHist
- */
- CV_WRAP virtual void balanceWhite(InputArray src, OutputArray dst) = 0;
- };
- /** @brief A simple white balance algorithm that works by independently stretching
- each of the input image channels to the specified range. For increased robustness
- it ignores the top and bottom \f$p\%\f$ of pixel values.
- */
- class CV_EXPORTS_W SimpleWB : public WhiteBalancer
- {
- public:
- /** @brief Input image range minimum value
- @see setInputMin */
- CV_WRAP virtual float getInputMin() const = 0;
- /** @copybrief getInputMin @see getInputMin */
- CV_WRAP virtual void setInputMin(float val) = 0;
- /** @brief Input image range maximum value
- @see setInputMax */
- CV_WRAP virtual float getInputMax() const = 0;
- /** @copybrief getInputMax @see getInputMax */
- CV_WRAP virtual void setInputMax(float val) = 0;
- /** @brief Output image range minimum value
- @see setOutputMin */
- CV_WRAP virtual float getOutputMin() const = 0;
- /** @copybrief getOutputMin @see getOutputMin */
- CV_WRAP virtual void setOutputMin(float val) = 0;
- /** @brief Output image range maximum value
- @see setOutputMax */
- CV_WRAP virtual float getOutputMax() const = 0;
- /** @copybrief getOutputMax @see getOutputMax */
- CV_WRAP virtual void setOutputMax(float val) = 0;
- /** @brief Percent of top/bottom values to ignore
- @see setP */
- CV_WRAP virtual float getP() const = 0;
- /** @copybrief getP @see getP */
- CV_WRAP virtual void setP(float val) = 0;
- };
- /** @brief Creates an instance of SimpleWB
- */
- CV_EXPORTS_W Ptr<SimpleWB> createSimpleWB();
- /** @brief Gray-world white balance algorithm
- This algorithm scales the values of pixels based on a
- gray-world assumption which states that the average of all channels
- should result in a gray image.
- It adds a modification which thresholds pixels based on their
- saturation value and only uses pixels below the provided threshold in
- finding average pixel values.
- Saturation is calculated using the following for a 3-channel RGB image per
- pixel I and is in the range [0, 1]:
- \f[ \texttt{Saturation} [I] = \frac{\textrm{max}(R,G,B) - \textrm{min}(R,G,B)
- }{\textrm{max}(R,G,B)} \f]
- A threshold of 1 means that all pixels are used to white-balance, while a
- threshold of 0 means no pixels are used. Lower thresholds are useful in
- white-balancing saturated images.
- Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
- */
- class CV_EXPORTS_W GrayworldWB : public WhiteBalancer
- {
- public:
- /** @brief Maximum saturation for a pixel to be included in the
- gray-world assumption
- @see setSaturationThreshold */
- CV_WRAP virtual float getSaturationThreshold() const = 0;
- /** @copybrief getSaturationThreshold @see getSaturationThreshold */
- CV_WRAP virtual void setSaturationThreshold(float val) = 0;
- };
- /** @brief Creates an instance of GrayworldWB
- */
- CV_EXPORTS_W Ptr<GrayworldWB> createGrayworldWB();
- /** @brief More sophisticated learning-based automatic white balance algorithm.
- As @ref GrayworldWB, this algorithm works by applying different gains to the input
- image channels, but their computation is a bit more involved compared to the
- simple gray-world assumption. More details about the algorithm can be found in
- @cite Cheng2015 .
- To mask out saturated pixels this function uses only pixels that satisfy the
- following condition:
- \f[ \frac{\textrm{max}(R,G,B)}{\texttt{range_max_val}} < \texttt{saturation_thresh} \f]
- Currently supports images of type @ref CV_8UC3 and @ref CV_16UC3.
- */
- class CV_EXPORTS_W LearningBasedWB : public WhiteBalancer
- {
- public:
- /** @brief Implements the feature extraction part of the algorithm.
- In accordance with @cite Cheng2015 , computes the following features for the input image:
- 1. Chromaticity of an average (R,G,B) tuple
- 2. Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
- 3. Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
- 4. Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
- the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
- of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
- a Epanechnikov kernel function.
- @param src Input three-channel image (BGR color space is assumed).
- @param dst An array of four (r,g) chromaticity tuples corresponding to the features listed above.
- */
- CV_WRAP virtual void extractSimpleFeatures(InputArray src, OutputArray dst) = 0;
- /** @brief Maximum possible value of the input image (e.g. 255 for 8 bit images,
- 4095 for 12 bit images)
- @see setRangeMaxVal */
- CV_WRAP virtual int getRangeMaxVal() const = 0;
- /** @copybrief getRangeMaxVal @see getRangeMaxVal */
- CV_WRAP virtual void setRangeMaxVal(int val) = 0;
- /** @brief Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
- channels exceeds \f$\texttt{saturation_threshold}\times\texttt{range_max_val}\f$ are ignored.
- @see setSaturationThreshold */
- CV_WRAP virtual float getSaturationThreshold() const = 0;
- /** @copybrief getSaturationThreshold @see getSaturationThreshold */
- CV_WRAP virtual void setSaturationThreshold(float val) = 0;
- /** @brief Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
- by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
- (e.g. 256 bins for a 12 bit image).
- @see setHistBinNum */
- CV_WRAP virtual int getHistBinNum() const = 0;
- /** @copybrief getHistBinNum @see getHistBinNum */
- CV_WRAP virtual void setHistBinNum(int val) = 0;
- };
- /** @brief Creates an instance of LearningBasedWB
- @param path_to_model Path to a .yml file with the model. If not specified, the default model is used
- */
- CV_EXPORTS_W Ptr<LearningBasedWB> createLearningBasedWB(const String& path_to_model = String());
- /** @brief Implements an efficient fixed-point approximation for applying channel gains, which is
- the last step of multiple white balance algorithms.
- @param src Input three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)
- @param dst Output image of the same size and type as src.
- @param gainB gain for the B channel
- @param gainG gain for the G channel
- @param gainR gain for the R channel
- */
- CV_EXPORTS_W void applyChannelGains(InputArray src, OutputArray dst, float gainB, float gainG, float gainR);
- //! @}
- }
- }
- #endif // __OPENCV_SIMPLE_COLOR_BALANCE_HPP__
|