/* /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Name: codec.cpp // Purpose: // Author: Ulrich Telle // Modified by: // Created: 2006-12-06 // RCS-ID: $$ // Copyright: (c) Ulrich Telle // Licence: wxWindows licence + RSA Data Security license /////////////////////////////////////////////////////////////////////////////// /// \file codec.cpp Implementation of MD5, RC4 and AES algorithms */ /* ********************************************************************** ** Copyright (C) 1990, RSA Data Security, Inc. All rights reserved. ** ** ** ** License to copy and use this software is granted provided that ** ** it is identified as the "RSA Data Security, Inc. MD5 Message ** ** Digest Algorithm" in all material mentioning or referencing this ** ** software or this function. ** ** ** ** License is also granted to make and use derivative works ** ** provided that such works are identified as "derived from the RSA ** ** Data Security, Inc. MD5 Message Digest Algorithm" in all ** ** material mentioning or referencing the derived work. ** ** ** ** RSA Data Security, Inc. makes no representations concerning ** ** either the merchantability of this software or the suitability ** ** of this software for any particular purpose. It is provided "as ** ** is" without express or implied warranty of any kind. ** ** ** ** These notices must be retained in any copies of any part of this ** ** documentation and/or software. ** ********************************************************************** */ #include "codec.h" #ifndef SQLITE_USER_AUTHENTICATION #if CODEC_TYPE == CODEC_TYPE_AES256 #include "sha2.h" #include "sha2.c" #endif #endif /* // ---------------- // MD5 by RSA // ---------------- // C headers for MD5 */ #include #include #include #include #define MD5_HASHBYTES 16 /* /// Structure representing an MD5 context while ecrypting. (For internal use only) */ typedef struct MD5Context { unsigned int buf[4]; unsigned int bits[2]; unsigned char in[64]; } MD5_CTX; static void MD5Init(MD5_CTX *context); static void MD5Update(MD5_CTX *context, unsigned char *buf, unsigned len); static void MD5Final(unsigned char digest[MD5_HASHBYTES], MD5_CTX *context); static void MD5Transform(unsigned int buf[4], unsigned int in[16]); static void byteReverse(unsigned char *buf, unsigned longs); /* * Note: this code is harmless on little-endian machines. */ static void byteReverse(unsigned char *buf, unsigned longs) { static int littleEndian = -1; if (littleEndian < 0) { /* Are we little or big endian? This method is from Harbison & Steele. */ union { long l; char c[sizeof(long)]; } u; u.l = 1; littleEndian = (u.c[0] == 1) ? 1 : 0; } if (littleEndian != 1) { unsigned int t; do { t = (unsigned int) ((unsigned) buf[3] << 8 | buf[2]) << 16 | ((unsigned) buf[1] << 8 | buf[0]); *(unsigned int *) buf = t; buf += 4; } while (--longs); } } #if 0 static char* MD5End(MD5_CTX *, char *); static char* MD5End(MD5_CTX *ctx, char *buf) { int i; unsigned char digest[MD5_HASHBYTES]; char hex[]="0123456789abcdef"; if (!buf) { buf = (char *)malloc(33); } if (!buf) { return 0; } MD5Final(digest,ctx); for (i=0;i> 4]; buf[i+i+1] = hex[digest[i] & 0x0f]; } buf[i+i] = '\0'; return buf; } #endif /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ static void MD5Final(unsigned char digest[16], MD5_CTX *ctx) { unsigned count; unsigned char *p; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (unsigned int *) ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ ((unsigned int *) ctx->in)[14] = ctx->bits[0]; ((unsigned int *) ctx->in)[15] = ctx->bits[1]; MD5Transform(ctx->buf, (unsigned int *) ctx->in); byteReverse((unsigned char *) ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset((char *) ctx, 0, sizeof(ctx)); /* In case it's sensitive */ } static void MD5Init(MD5_CTX *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } static void MD5Update(MD5_CTX *ctx, unsigned char *buf, unsigned len) { unsigned int t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((unsigned int) len << 3)) < t) { ctx->bits[1]++; /* Carry from low to high */ } ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *) ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (unsigned int *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (unsigned int *) ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ static void MD5Transform(unsigned int buf[4], unsigned int in[16]) { register unsigned int a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } /* // --------------------------- // RC4 implementation // --------------------------- */ /** * RC4 is the standard encryption algorithm used in PDF format */ void CodecRC4(Codec* codec, unsigned char* key, int keylen, unsigned char* textin, int textlen, unsigned char* textout) { int i; int j; int t; unsigned char rc4[256]; int a = 0; int b = 0; unsigned char k; for (i = 0; i < 256; i++) { rc4[i] = i; } j = 0; for (i = 0; i < 256; i++) { t = rc4[i]; j = (j + t + key[i % keylen]) % 256; rc4[i] = rc4[j]; rc4[j] = t; } for (i = 0; i < textlen; i++) { a = (a + 1) % 256; t = rc4[a]; b = (b + t) % 256; rc4[a] = rc4[b]; rc4[b] = t; k = rc4[(rc4[a] + rc4[b]) % 256]; textout[i] = textin[i] ^ k; } } void CodecGetMD5Binary(Codec* codec, unsigned char* data, int length, unsigned char* digest) { MD5_CTX ctx; MD5Init(&ctx); MD5Update(&ctx, data, length); MD5Final(digest,&ctx); } #if CODEC_TYPE == CODEC_TYPE_AES256 void CodecGetSHABinary(Codec* codec, unsigned char* data, int length, unsigned char* digest) { sha256(data, (unsigned int) length, digest); } #endif #define MODMULT(a, b, c, m, s) q = s / a; s = b * (s - a * q) - c * q; if (s < 0) s += m void CodecGenerateInitialVector(Codec* codec, int seed, unsigned char iv[16]) { unsigned char initkey[16]; int j, q; int z = seed + 1; for (j = 0; j < 4; j++) { MODMULT(52774, 40692, 3791, 2147483399L, z); initkey[4*j+0] = 0xff & z; initkey[4*j+1] = 0xff & (z >> 8); initkey[4*j+2] = 0xff & (z >> 16); initkey[4*j+3] = 0xff & (z >> 24); } CodecGetMD5Binary(codec, (unsigned char*) initkey, 16, iv); } void CodecAES(Codec* codec, int page, int encrypt, unsigned char encryptionKey[KEYLENGTH], unsigned char* datain, int datalen, unsigned char* dataout) { unsigned char initial[16]; unsigned char pagekey[KEYLENGTH]; unsigned char nkey[KEYLENGTH+4+4]; int keyLength = KEYLENGTH; int nkeylen = keyLength + 4 + 4; int j; int direction = (encrypt) ? RIJNDAEL_Direction_Encrypt : RIJNDAEL_Direction_Decrypt; int len = 0; for (j = 0; j < keyLength; j++) { nkey[j] = encryptionKey[j]; } nkey[keyLength+0] = 0xff & page; nkey[keyLength+1] = 0xff & (page >> 8); nkey[keyLength+2] = 0xff & (page >> 16); nkey[keyLength+3] = 0xff & (page >> 24); /* AES encryption needs some 'salt' */ nkey[keyLength+4] = 0x73; nkey[keyLength+5] = 0x41; nkey[keyLength+6] = 0x6c; nkey[keyLength+7] = 0x54; #if CODEC_TYPE == CODEC_TYPE_AES256 CodecGetSHABinary(codec, nkey, nkeylen, pagekey); #else CodecGetMD5Binary(codec, nkey, nkeylen, pagekey); #endif CodecGenerateInitialVector(codec, page, initial); #if CODEC_TYPE == CODEC_TYPE_AES256 RijndaelInit(codec->m_aes, RIJNDAEL_Direction_Mode_CBC, direction, pagekey, RIJNDAEL_Direction_KeyLength_Key32Bytes, initial); #else RijndaelInit(codec->m_aes, RIJNDAEL_Direction_Mode_CBC, direction, pagekey, RIJNDAEL_Direction_KeyLength_Key16Bytes, initial); #endif if (encrypt) { len = RijndaelBlockEncrypt(codec->m_aes, datain, datalen*8, dataout); } else { len = RijndaelBlockDecrypt(codec->m_aes, datain, datalen*8, dataout); } /* It is a good idea to check the error code */ if (len < 0) { /* AES: Error on encrypting. */ } } static unsigned char padding[] = "\x28\xBF\x4E\x5E\x4E\x75\x8A\x41\x64\x00\x4E\x56\xFF\xFA\x01\x08\x2E\x2E\x00\xB6\xD0\x68\x3E\x80\x2F\x0C\xA9\xFE\x64\x53\x69\x7A"; void CodecInit(Codec* codec) { codec->m_isEncrypted = 0; codec->m_hasReadKey = 0; codec->m_hasWriteKey = 0; codec->m_aes = (Rijndael*) sqlite3_malloc(sizeof(Rijndael)); RijndaelCreate(codec->m_aes); } void CodecTerm(Codec* codec) { sqlite3_free(codec->m_aes); } void CodecSetIsEncrypted(Codec* codec, int isEncrypted) { codec->m_isEncrypted = isEncrypted; } void CodecSetHasReadKey(Codec* codec, int hasReadKey) { codec->m_hasReadKey = hasReadKey; } void CodecSetHasWriteKey(Codec* codec, int hasWriteKey) { codec->m_hasWriteKey = hasWriteKey; } void CodecSetBtree(Codec* codec, Btree* bt) { codec->m_bt = bt; } int CodecIsEncrypted(Codec* codec) { return codec->m_isEncrypted; } int CodecHasReadKey(Codec* codec) { return codec->m_hasReadKey; } int CodecHasWriteKey(Codec* codec) { return codec->m_hasWriteKey; } Btree* CodecGetBtree(Codec* codec) { return codec->m_bt; } unsigned char* CodecGetPageBuffer(Codec* codec) { return &codec->m_page[4]; } void CodecCopy(Codec* codec, Codec* other) { int j; codec->m_isEncrypted = other->m_isEncrypted; codec->m_hasReadKey = other->m_hasReadKey; codec->m_hasWriteKey = other->m_hasWriteKey; for (j = 0; j < KEYLENGTH; j++) { codec->m_readKey[j] = other->m_readKey[j]; codec->m_writeKey[j] = other->m_writeKey[j]; } codec->m_bt = other->m_bt; RijndaelInvalidate(codec->m_aes); } void CodecCopyKey(Codec* codec, int read2write) { int j; if (read2write) { for (j = 0; j < KEYLENGTH; j++) { codec->m_writeKey[j] = codec->m_readKey[j]; } } else { for (j = 0; j < KEYLENGTH; j++) { codec->m_readKey[j] = codec->m_writeKey[j]; } } } void CodecPadPassword(Codec* codec, char* password, int pswdlen, unsigned char pswd[32]) { int j; int p = 0; int m = pswdlen; if (m > 32) m = 32; for (j = 0; j < m; j++) { pswd[p++] = (unsigned char) password[j]; } for (j = 0; p < 32 && j < 32; j++) { pswd[p++] = padding[j]; } } void CodecGenerateReadKey(Codec* codec, char* userPassword, int passwordLength) { CodecGenerateEncryptionKey(codec, userPassword, passwordLength, codec->m_readKey); } void CodecGenerateWriteKey(Codec* codec, char* userPassword, int passwordLength) { CodecGenerateEncryptionKey(codec, userPassword, passwordLength, codec->m_writeKey); } void CodecGenerateEncryptionKey(Codec* codec, char* userPassword, int passwordLength, unsigned char encryptionKey[KEYLENGTH]) { #if CODEC_TYPE == CODEC_TYPE_AES256 unsigned char userPad[32]; unsigned char digest[KEYLENGTH]; int keyLength = KEYLENGTH; int k; /* Pad password */ CodecPadPassword(codec, userPassword, passwordLength, userPad); sha256(userPad, 32, digest); for (k = 0; k < CODEC_SHA_ITER; ++k) { sha256(digest, KEYLENGTH, digest); } memcpy(encryptionKey, digest, keyLength); #else unsigned char userPad[32]; unsigned char ownerPad[32]; unsigned char ownerKey[32]; unsigned char mkey[MD5_HASHBYTES]; unsigned char digest[MD5_HASHBYTES]; int keyLength = MD5_HASHBYTES; int i, j, k; MD5_CTX ctx; /* Pad passwords */ CodecPadPassword(codec, userPassword, passwordLength, userPad); CodecPadPassword(codec, "", 0, ownerPad); /* Compute owner key */ MD5Init(&ctx); MD5Update(&ctx, ownerPad, 32); MD5Final(digest,&ctx); /* only use for the input as many bit as the key consists of */ for (k = 0; k < 50; ++k) { MD5Init(&ctx); MD5Update(&ctx, digest, keyLength); MD5Final(digest,&ctx); } memcpy(ownerKey, userPad, 32); for (i = 0; i < 20; ++i) { for (j = 0; j < keyLength ; ++j) { mkey[j] = (digest[j] ^ i); } CodecRC4(codec, mkey, keyLength, ownerKey, 32, ownerKey); } /* Compute encryption key */ MD5Init(&ctx); MD5Update(&ctx, userPad, 32); MD5Update(&ctx, ownerKey, 32); MD5Final(digest,&ctx); /* only use the really needed bits as input for the hash */ for (k = 0; k < 50; ++k) { MD5Init(&ctx); MD5Update(&ctx, digest, keyLength); MD5Final(digest, &ctx); } memcpy(encryptionKey, digest, keyLength); #endif } void CodecEncrypt(Codec* codec, int page, unsigned char* data, int len, int useWriteKey) { #ifdef WXSQLITE3_USE_OLD_ENCRYPTION_SCHEME /* Use the previous encryption scheme */ unsigned char* key = (useWriteKey) ? codec->m_writeKey : codec->m_readKey; CodecAES(codec, page, 1, key, data, len, data); #else unsigned char dbHeader[8]; int offset = 0; unsigned char* key = (useWriteKey) ? codec->m_writeKey : codec->m_readKey; if (page == 1) { /* Save the header bytes remaining unencrypted */ memcpy(dbHeader, data+16, 8); offset = 16; CodecAES(codec, page, 1, key, data, 16, data); } CodecAES(codec, page, 1, key, data+offset, len-offset, data+offset); if (page == 1) { /* Move the encrypted header bytes 16..23 to a safe position */ memcpy(data+8, data+16, 8); /* Restore the unencrypted header bytes 16..23 */ memcpy(data+16, dbHeader, 8); } #endif } void CodecDecrypt(Codec* codec, int page, unsigned char* data, int len) { #ifdef WXSQLITE3_USE_OLD_ENCRYPTION_SCHEME /* Use the previous encryption scheme */ CodecAES(codec, page, 0, codec->m_readKey, data, len, data); #else unsigned char dbHeader[8]; int dbPageSize; int offset = 0; if (page == 1) { /* Save (unencrypted) header bytes 16..23 */ memcpy(dbHeader, data+16, 8); /* Determine page size */ dbPageSize = (dbHeader[0] << 8) | (dbHeader[1] << 16); /* Check whether the database header is valid */ /* If yes, the database follows the new encryption scheme, otherwise use the previous encryption scheme */ if ((dbPageSize >= 512) && (dbPageSize <= SQLITE_MAX_PAGE_SIZE) && (((dbPageSize-1) & dbPageSize) == 0) && (dbHeader[5] == 0x40) && (dbHeader[6] == 0x20) && (dbHeader[7] == 0x20)) { /* Restore encrypted bytes 16..23 for new encryption scheme */ memcpy(data+16, data+8, 8); offset = 16; } } CodecAES(codec, page, 0, codec->m_readKey, data+offset, len-offset, data+offset); if (page == 1 && offset != 0) { /* Verify the database header */ if (memcmp(dbHeader, data+16, 8) == 0) { memcpy(data, SQLITE_FILE_HEADER, 16); } } #endif }