LzmaDec.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100
  1. /* LzmaDec.c -- LZMA Decoder
  2. 2017-04-03 : Igor Pavlov : Public domain */
  3. #include "Precomp.h"
  4. #include "LzmaDec.h"
  5. #include <string.h>
  6. #define kNumTopBits 24
  7. #define kTopValue ((UInt32)1 << kNumTopBits)
  8. #define kNumBitModelTotalBits 11
  9. #define kBitModelTotal (1 << kNumBitModelTotalBits)
  10. #define kNumMoveBits 5
  11. #define RC_INIT_SIZE 5
  12. #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  13. #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  14. #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  15. #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  16. #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  17. { UPDATE_0(p); i = (i + i); A0; } else \
  18. { UPDATE_1(p); i = (i + i) + 1; A1; }
  19. #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
  20. #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
  21. #define TREE_DECODE(probs, limit, i) \
  22. { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  23. /* #define _LZMA_SIZE_OPT */
  24. #ifdef _LZMA_SIZE_OPT
  25. #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  26. #else
  27. #define TREE_6_DECODE(probs, i) \
  28. { i = 1; \
  29. TREE_GET_BIT(probs, i); \
  30. TREE_GET_BIT(probs, i); \
  31. TREE_GET_BIT(probs, i); \
  32. TREE_GET_BIT(probs, i); \
  33. TREE_GET_BIT(probs, i); \
  34. TREE_GET_BIT(probs, i); \
  35. i -= 0x40; }
  36. #endif
  37. #define NORMAL_LITER_DEC GET_BIT(prob + symbol, symbol)
  38. #define MATCHED_LITER_DEC \
  39. matchByte <<= 1; \
  40. bit = (matchByte & offs); \
  41. probLit = prob + offs + bit + symbol; \
  42. GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
  43. #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
  44. #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  45. #define UPDATE_0_CHECK range = bound;
  46. #define UPDATE_1_CHECK range -= bound; code -= bound;
  47. #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  48. { UPDATE_0_CHECK; i = (i + i); A0; } else \
  49. { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
  50. #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  51. #define TREE_DECODE_CHECK(probs, limit, i) \
  52. { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  53. #define kNumPosBitsMax 4
  54. #define kNumPosStatesMax (1 << kNumPosBitsMax)
  55. #define kLenNumLowBits 3
  56. #define kLenNumLowSymbols (1 << kLenNumLowBits)
  57. #define kLenNumMidBits 3
  58. #define kLenNumMidSymbols (1 << kLenNumMidBits)
  59. #define kLenNumHighBits 8
  60. #define kLenNumHighSymbols (1 << kLenNumHighBits)
  61. #define LenChoice 0
  62. #define LenChoice2 (LenChoice + 1)
  63. #define LenLow (LenChoice2 + 1)
  64. #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
  65. #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
  66. #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  67. #define kNumStates 12
  68. #define kNumLitStates 7
  69. #define kStartPosModelIndex 4
  70. #define kEndPosModelIndex 14
  71. #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
  72. #define kNumPosSlotBits 6
  73. #define kNumLenToPosStates 4
  74. #define kNumAlignBits 4
  75. #define kAlignTableSize (1 << kNumAlignBits)
  76. #define kMatchMinLen 2
  77. #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
  78. #define IsMatch 0
  79. #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
  80. #define IsRepG0 (IsRep + kNumStates)
  81. #define IsRepG1 (IsRepG0 + kNumStates)
  82. #define IsRepG2 (IsRepG1 + kNumStates)
  83. #define IsRep0Long (IsRepG2 + kNumStates)
  84. #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
  85. #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
  86. #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
  87. #define LenCoder (Align + kAlignTableSize)
  88. #define RepLenCoder (LenCoder + kNumLenProbs)
  89. #define Literal (RepLenCoder + kNumLenProbs)
  90. #define LZMA_BASE_SIZE 1846
  91. #define LZMA_LIT_SIZE 0x300
  92. #if Literal != LZMA_BASE_SIZE
  93. StopCompilingDueBUG
  94. #endif
  95. #define LzmaProps_GetNumProbs(p) (Literal + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
  96. #define LZMA_DIC_MIN (1 << 12)
  97. /* First LZMA-symbol is always decoded.
  98. And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
  99. Out:
  100. Result:
  101. SZ_OK - OK
  102. SZ_ERROR_DATA - Error
  103. p->remainLen:
  104. < kMatchSpecLenStart : normal remain
  105. = kMatchSpecLenStart : finished
  106. = kMatchSpecLenStart + 1 : Flush marker (unused now)
  107. = kMatchSpecLenStart + 2 : State Init Marker (unused now)
  108. */
  109. static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  110. {
  111. CLzmaProb *probs = p->probs;
  112. unsigned state = p->state;
  113. UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  114. unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  115. unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
  116. unsigned lc = p->prop.lc;
  117. Byte *dic = p->dic;
  118. SizeT dicBufSize = p->dicBufSize;
  119. SizeT dicPos = p->dicPos;
  120. UInt32 processedPos = p->processedPos;
  121. UInt32 checkDicSize = p->checkDicSize;
  122. unsigned len = 0;
  123. const Byte *buf = p->buf;
  124. UInt32 range = p->range;
  125. UInt32 code = p->code;
  126. do
  127. {
  128. CLzmaProb *prob;
  129. UInt32 bound;
  130. unsigned ttt;
  131. unsigned posState = processedPos & pbMask;
  132. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  133. IF_BIT_0(prob)
  134. {
  135. unsigned symbol;
  136. UPDATE_0(prob);
  137. prob = probs + Literal;
  138. if (processedPos != 0 || checkDicSize != 0)
  139. prob += ((UInt32)LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
  140. (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
  141. processedPos++;
  142. if (state < kNumLitStates)
  143. {
  144. state -= (state < 4) ? state : 3;
  145. symbol = 1;
  146. #ifdef _LZMA_SIZE_OPT
  147. do { NORMAL_LITER_DEC } while (symbol < 0x100);
  148. #else
  149. NORMAL_LITER_DEC
  150. NORMAL_LITER_DEC
  151. NORMAL_LITER_DEC
  152. NORMAL_LITER_DEC
  153. NORMAL_LITER_DEC
  154. NORMAL_LITER_DEC
  155. NORMAL_LITER_DEC
  156. NORMAL_LITER_DEC
  157. #endif
  158. }
  159. else
  160. {
  161. unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  162. unsigned offs = 0x100;
  163. state -= (state < 10) ? 3 : 6;
  164. symbol = 1;
  165. #ifdef _LZMA_SIZE_OPT
  166. do
  167. {
  168. unsigned bit;
  169. CLzmaProb *probLit;
  170. MATCHED_LITER_DEC
  171. }
  172. while (symbol < 0x100);
  173. #else
  174. {
  175. unsigned bit;
  176. CLzmaProb *probLit;
  177. MATCHED_LITER_DEC
  178. MATCHED_LITER_DEC
  179. MATCHED_LITER_DEC
  180. MATCHED_LITER_DEC
  181. MATCHED_LITER_DEC
  182. MATCHED_LITER_DEC
  183. MATCHED_LITER_DEC
  184. MATCHED_LITER_DEC
  185. }
  186. #endif
  187. }
  188. dic[dicPos++] = (Byte)symbol;
  189. continue;
  190. }
  191. {
  192. UPDATE_1(prob);
  193. prob = probs + IsRep + state;
  194. IF_BIT_0(prob)
  195. {
  196. UPDATE_0(prob);
  197. state += kNumStates;
  198. prob = probs + LenCoder;
  199. }
  200. else
  201. {
  202. UPDATE_1(prob);
  203. if (checkDicSize == 0 && processedPos == 0)
  204. return SZ_ERROR_DATA;
  205. prob = probs + IsRepG0 + state;
  206. IF_BIT_0(prob)
  207. {
  208. UPDATE_0(prob);
  209. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  210. IF_BIT_0(prob)
  211. {
  212. UPDATE_0(prob);
  213. dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  214. dicPos++;
  215. processedPos++;
  216. state = state < kNumLitStates ? 9 : 11;
  217. continue;
  218. }
  219. UPDATE_1(prob);
  220. }
  221. else
  222. {
  223. UInt32 distance;
  224. UPDATE_1(prob);
  225. prob = probs + IsRepG1 + state;
  226. IF_BIT_0(prob)
  227. {
  228. UPDATE_0(prob);
  229. distance = rep1;
  230. }
  231. else
  232. {
  233. UPDATE_1(prob);
  234. prob = probs + IsRepG2 + state;
  235. IF_BIT_0(prob)
  236. {
  237. UPDATE_0(prob);
  238. distance = rep2;
  239. }
  240. else
  241. {
  242. UPDATE_1(prob);
  243. distance = rep3;
  244. rep3 = rep2;
  245. }
  246. rep2 = rep1;
  247. }
  248. rep1 = rep0;
  249. rep0 = distance;
  250. }
  251. state = state < kNumLitStates ? 8 : 11;
  252. prob = probs + RepLenCoder;
  253. }
  254. #ifdef _LZMA_SIZE_OPT
  255. {
  256. unsigned lim, offset;
  257. CLzmaProb *probLen = prob + LenChoice;
  258. IF_BIT_0(probLen)
  259. {
  260. UPDATE_0(probLen);
  261. probLen = prob + LenLow + (posState << kLenNumLowBits);
  262. offset = 0;
  263. lim = (1 << kLenNumLowBits);
  264. }
  265. else
  266. {
  267. UPDATE_1(probLen);
  268. probLen = prob + LenChoice2;
  269. IF_BIT_0(probLen)
  270. {
  271. UPDATE_0(probLen);
  272. probLen = prob + LenMid + (posState << kLenNumMidBits);
  273. offset = kLenNumLowSymbols;
  274. lim = (1 << kLenNumMidBits);
  275. }
  276. else
  277. {
  278. UPDATE_1(probLen);
  279. probLen = prob + LenHigh;
  280. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  281. lim = (1 << kLenNumHighBits);
  282. }
  283. }
  284. TREE_DECODE(probLen, lim, len);
  285. len += offset;
  286. }
  287. #else
  288. {
  289. CLzmaProb *probLen = prob + LenChoice;
  290. IF_BIT_0(probLen)
  291. {
  292. UPDATE_0(probLen);
  293. probLen = prob + LenLow + (posState << kLenNumLowBits);
  294. len = 1;
  295. TREE_GET_BIT(probLen, len);
  296. TREE_GET_BIT(probLen, len);
  297. TREE_GET_BIT(probLen, len);
  298. len -= 8;
  299. }
  300. else
  301. {
  302. UPDATE_1(probLen);
  303. probLen = prob + LenChoice2;
  304. IF_BIT_0(probLen)
  305. {
  306. UPDATE_0(probLen);
  307. probLen = prob + LenMid + (posState << kLenNumMidBits);
  308. len = 1;
  309. TREE_GET_BIT(probLen, len);
  310. TREE_GET_BIT(probLen, len);
  311. TREE_GET_BIT(probLen, len);
  312. }
  313. else
  314. {
  315. UPDATE_1(probLen);
  316. probLen = prob + LenHigh;
  317. TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
  318. len += kLenNumLowSymbols + kLenNumMidSymbols;
  319. }
  320. }
  321. }
  322. #endif
  323. if (state >= kNumStates)
  324. {
  325. UInt32 distance;
  326. prob = probs + PosSlot +
  327. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
  328. TREE_6_DECODE(prob, distance);
  329. if (distance >= kStartPosModelIndex)
  330. {
  331. unsigned posSlot = (unsigned)distance;
  332. unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
  333. distance = (2 | (distance & 1));
  334. if (posSlot < kEndPosModelIndex)
  335. {
  336. distance <<= numDirectBits;
  337. prob = probs + SpecPos + distance - posSlot - 1;
  338. {
  339. UInt32 mask = 1;
  340. unsigned i = 1;
  341. do
  342. {
  343. GET_BIT2(prob + i, i, ; , distance |= mask);
  344. mask <<= 1;
  345. }
  346. while (--numDirectBits != 0);
  347. }
  348. }
  349. else
  350. {
  351. numDirectBits -= kNumAlignBits;
  352. do
  353. {
  354. NORMALIZE
  355. range >>= 1;
  356. {
  357. UInt32 t;
  358. code -= range;
  359. t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
  360. distance = (distance << 1) + (t + 1);
  361. code += range & t;
  362. }
  363. /*
  364. distance <<= 1;
  365. if (code >= range)
  366. {
  367. code -= range;
  368. distance |= 1;
  369. }
  370. */
  371. }
  372. while (--numDirectBits != 0);
  373. prob = probs + Align;
  374. distance <<= kNumAlignBits;
  375. {
  376. unsigned i = 1;
  377. GET_BIT2(prob + i, i, ; , distance |= 1);
  378. GET_BIT2(prob + i, i, ; , distance |= 2);
  379. GET_BIT2(prob + i, i, ; , distance |= 4);
  380. GET_BIT2(prob + i, i, ; , distance |= 8);
  381. }
  382. if (distance == (UInt32)0xFFFFFFFF)
  383. {
  384. len += kMatchSpecLenStart;
  385. state -= kNumStates;
  386. break;
  387. }
  388. }
  389. }
  390. rep3 = rep2;
  391. rep2 = rep1;
  392. rep1 = rep0;
  393. rep0 = distance + 1;
  394. if (checkDicSize == 0)
  395. {
  396. if (distance >= processedPos)
  397. {
  398. p->dicPos = dicPos;
  399. return SZ_ERROR_DATA;
  400. }
  401. }
  402. else if (distance >= checkDicSize)
  403. {
  404. p->dicPos = dicPos;
  405. return SZ_ERROR_DATA;
  406. }
  407. state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
  408. }
  409. len += kMatchMinLen;
  410. {
  411. SizeT rem;
  412. unsigned curLen;
  413. SizeT pos;
  414. if ((rem = limit - dicPos) == 0)
  415. {
  416. p->dicPos = dicPos;
  417. return SZ_ERROR_DATA;
  418. }
  419. curLen = ((rem < len) ? (unsigned)rem : len);
  420. pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
  421. processedPos += curLen;
  422. len -= curLen;
  423. if (curLen <= dicBufSize - pos)
  424. {
  425. Byte *dest = dic + dicPos;
  426. ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
  427. const Byte *lim = dest + curLen;
  428. dicPos += curLen;
  429. do
  430. *(dest) = (Byte)*(dest + src);
  431. while (++dest != lim);
  432. }
  433. else
  434. {
  435. do
  436. {
  437. dic[dicPos++] = dic[pos];
  438. if (++pos == dicBufSize)
  439. pos = 0;
  440. }
  441. while (--curLen != 0);
  442. }
  443. }
  444. }
  445. }
  446. while (dicPos < limit && buf < bufLimit);
  447. NORMALIZE;
  448. p->buf = buf;
  449. p->range = range;
  450. p->code = code;
  451. p->remainLen = len;
  452. p->dicPos = dicPos;
  453. p->processedPos = processedPos;
  454. p->reps[0] = rep0;
  455. p->reps[1] = rep1;
  456. p->reps[2] = rep2;
  457. p->reps[3] = rep3;
  458. p->state = state;
  459. return SZ_OK;
  460. }
  461. static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
  462. {
  463. if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
  464. {
  465. Byte *dic = p->dic;
  466. SizeT dicPos = p->dicPos;
  467. SizeT dicBufSize = p->dicBufSize;
  468. unsigned len = p->remainLen;
  469. SizeT rep0 = p->reps[0]; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
  470. SizeT rem = limit - dicPos;
  471. if (rem < len)
  472. len = (unsigned)(rem);
  473. if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
  474. p->checkDicSize = p->prop.dicSize;
  475. p->processedPos += len;
  476. p->remainLen -= len;
  477. while (len != 0)
  478. {
  479. len--;
  480. dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
  481. dicPos++;
  482. }
  483. p->dicPos = dicPos;
  484. }
  485. }
  486. static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  487. {
  488. do
  489. {
  490. SizeT limit2 = limit;
  491. if (p->checkDicSize == 0)
  492. {
  493. UInt32 rem = p->prop.dicSize - p->processedPos;
  494. if (limit - p->dicPos > rem)
  495. limit2 = p->dicPos + rem;
  496. }
  497. RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
  498. if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
  499. p->checkDicSize = p->prop.dicSize;
  500. LzmaDec_WriteRem(p, limit);
  501. }
  502. while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
  503. if (p->remainLen > kMatchSpecLenStart)
  504. p->remainLen = kMatchSpecLenStart;
  505. return 0;
  506. }
  507. typedef enum
  508. {
  509. DUMMY_ERROR, /* unexpected end of input stream */
  510. DUMMY_LIT,
  511. DUMMY_MATCH,
  512. DUMMY_REP
  513. } ELzmaDummy;
  514. static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
  515. {
  516. UInt32 range = p->range;
  517. UInt32 code = p->code;
  518. const Byte *bufLimit = buf + inSize;
  519. const CLzmaProb *probs = p->probs;
  520. unsigned state = p->state;
  521. ELzmaDummy res;
  522. {
  523. const CLzmaProb *prob;
  524. UInt32 bound;
  525. unsigned ttt;
  526. unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
  527. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  528. IF_BIT_0_CHECK(prob)
  529. {
  530. UPDATE_0_CHECK
  531. /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
  532. prob = probs + Literal;
  533. if (p->checkDicSize != 0 || p->processedPos != 0)
  534. prob += ((UInt32)LZMA_LIT_SIZE *
  535. ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
  536. (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
  537. if (state < kNumLitStates)
  538. {
  539. unsigned symbol = 1;
  540. do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
  541. }
  542. else
  543. {
  544. unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
  545. (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
  546. unsigned offs = 0x100;
  547. unsigned symbol = 1;
  548. do
  549. {
  550. unsigned bit;
  551. const CLzmaProb *probLit;
  552. matchByte <<= 1;
  553. bit = (matchByte & offs);
  554. probLit = prob + offs + bit + symbol;
  555. GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
  556. }
  557. while (symbol < 0x100);
  558. }
  559. res = DUMMY_LIT;
  560. }
  561. else
  562. {
  563. unsigned len;
  564. UPDATE_1_CHECK;
  565. prob = probs + IsRep + state;
  566. IF_BIT_0_CHECK(prob)
  567. {
  568. UPDATE_0_CHECK;
  569. state = 0;
  570. prob = probs + LenCoder;
  571. res = DUMMY_MATCH;
  572. }
  573. else
  574. {
  575. UPDATE_1_CHECK;
  576. res = DUMMY_REP;
  577. prob = probs + IsRepG0 + state;
  578. IF_BIT_0_CHECK(prob)
  579. {
  580. UPDATE_0_CHECK;
  581. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  582. IF_BIT_0_CHECK(prob)
  583. {
  584. UPDATE_0_CHECK;
  585. NORMALIZE_CHECK;
  586. return DUMMY_REP;
  587. }
  588. else
  589. {
  590. UPDATE_1_CHECK;
  591. }
  592. }
  593. else
  594. {
  595. UPDATE_1_CHECK;
  596. prob = probs + IsRepG1 + state;
  597. IF_BIT_0_CHECK(prob)
  598. {
  599. UPDATE_0_CHECK;
  600. }
  601. else
  602. {
  603. UPDATE_1_CHECK;
  604. prob = probs + IsRepG2 + state;
  605. IF_BIT_0_CHECK(prob)
  606. {
  607. UPDATE_0_CHECK;
  608. }
  609. else
  610. {
  611. UPDATE_1_CHECK;
  612. }
  613. }
  614. }
  615. state = kNumStates;
  616. prob = probs + RepLenCoder;
  617. }
  618. {
  619. unsigned limit, offset;
  620. const CLzmaProb *probLen = prob + LenChoice;
  621. IF_BIT_0_CHECK(probLen)
  622. {
  623. UPDATE_0_CHECK;
  624. probLen = prob + LenLow + (posState << kLenNumLowBits);
  625. offset = 0;
  626. limit = 1 << kLenNumLowBits;
  627. }
  628. else
  629. {
  630. UPDATE_1_CHECK;
  631. probLen = prob + LenChoice2;
  632. IF_BIT_0_CHECK(probLen)
  633. {
  634. UPDATE_0_CHECK;
  635. probLen = prob + LenMid + (posState << kLenNumMidBits);
  636. offset = kLenNumLowSymbols;
  637. limit = 1 << kLenNumMidBits;
  638. }
  639. else
  640. {
  641. UPDATE_1_CHECK;
  642. probLen = prob + LenHigh;
  643. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  644. limit = 1 << kLenNumHighBits;
  645. }
  646. }
  647. TREE_DECODE_CHECK(probLen, limit, len);
  648. len += offset;
  649. }
  650. if (state < 4)
  651. {
  652. unsigned posSlot;
  653. prob = probs + PosSlot +
  654. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
  655. kNumPosSlotBits);
  656. TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
  657. if (posSlot >= kStartPosModelIndex)
  658. {
  659. unsigned numDirectBits = ((posSlot >> 1) - 1);
  660. /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
  661. if (posSlot < kEndPosModelIndex)
  662. {
  663. prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
  664. }
  665. else
  666. {
  667. numDirectBits -= kNumAlignBits;
  668. do
  669. {
  670. NORMALIZE_CHECK
  671. range >>= 1;
  672. code -= range & (((code - range) >> 31) - 1);
  673. /* if (code >= range) code -= range; */
  674. }
  675. while (--numDirectBits != 0);
  676. prob = probs + Align;
  677. numDirectBits = kNumAlignBits;
  678. }
  679. {
  680. unsigned i = 1;
  681. do
  682. {
  683. GET_BIT_CHECK(prob + i, i);
  684. }
  685. while (--numDirectBits != 0);
  686. }
  687. }
  688. }
  689. }
  690. }
  691. NORMALIZE_CHECK;
  692. return res;
  693. }
  694. void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
  695. {
  696. p->needFlush = 1;
  697. p->remainLen = 0;
  698. p->tempBufSize = 0;
  699. if (initDic)
  700. {
  701. p->processedPos = 0;
  702. p->checkDicSize = 0;
  703. p->needInitState = 1;
  704. }
  705. if (initState)
  706. p->needInitState = 1;
  707. }
  708. void LzmaDec_Init(CLzmaDec *p)
  709. {
  710. p->dicPos = 0;
  711. LzmaDec_InitDicAndState(p, True, True);
  712. }
  713. static void LzmaDec_InitStateReal(CLzmaDec *p)
  714. {
  715. SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
  716. SizeT i;
  717. CLzmaProb *probs = p->probs;
  718. for (i = 0; i < numProbs; i++)
  719. probs[i] = kBitModelTotal >> 1;
  720. p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
  721. p->state = 0;
  722. p->needInitState = 0;
  723. }
  724. SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
  725. ELzmaFinishMode finishMode, ELzmaStatus *status)
  726. {
  727. SizeT inSize = *srcLen;
  728. (*srcLen) = 0;
  729. LzmaDec_WriteRem(p, dicLimit);
  730. *status = LZMA_STATUS_NOT_SPECIFIED;
  731. while (p->remainLen != kMatchSpecLenStart)
  732. {
  733. int checkEndMarkNow;
  734. if (p->needFlush)
  735. {
  736. for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
  737. p->tempBuf[p->tempBufSize++] = *src++;
  738. if (p->tempBufSize < RC_INIT_SIZE)
  739. {
  740. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  741. return SZ_OK;
  742. }
  743. if (p->tempBuf[0] != 0)
  744. return SZ_ERROR_DATA;
  745. p->code =
  746. ((UInt32)p->tempBuf[1] << 24)
  747. | ((UInt32)p->tempBuf[2] << 16)
  748. | ((UInt32)p->tempBuf[3] << 8)
  749. | ((UInt32)p->tempBuf[4]);
  750. p->range = 0xFFFFFFFF;
  751. p->needFlush = 0;
  752. p->tempBufSize = 0;
  753. }
  754. checkEndMarkNow = 0;
  755. if (p->dicPos >= dicLimit)
  756. {
  757. if (p->remainLen == 0 && p->code == 0)
  758. {
  759. *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
  760. return SZ_OK;
  761. }
  762. if (finishMode == LZMA_FINISH_ANY)
  763. {
  764. *status = LZMA_STATUS_NOT_FINISHED;
  765. return SZ_OK;
  766. }
  767. if (p->remainLen != 0)
  768. {
  769. *status = LZMA_STATUS_NOT_FINISHED;
  770. return SZ_ERROR_DATA;
  771. }
  772. checkEndMarkNow = 1;
  773. }
  774. if (p->needInitState)
  775. LzmaDec_InitStateReal(p);
  776. if (p->tempBufSize == 0)
  777. {
  778. SizeT processed;
  779. const Byte *bufLimit;
  780. if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  781. {
  782. int dummyRes = LzmaDec_TryDummy(p, src, inSize);
  783. if (dummyRes == DUMMY_ERROR)
  784. {
  785. memcpy(p->tempBuf, src, inSize);
  786. p->tempBufSize = (unsigned)inSize;
  787. (*srcLen) += inSize;
  788. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  789. return SZ_OK;
  790. }
  791. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  792. {
  793. *status = LZMA_STATUS_NOT_FINISHED;
  794. return SZ_ERROR_DATA;
  795. }
  796. bufLimit = src;
  797. }
  798. else
  799. bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
  800. p->buf = src;
  801. if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
  802. return SZ_ERROR_DATA;
  803. processed = (SizeT)(p->buf - src);
  804. (*srcLen) += processed;
  805. src += processed;
  806. inSize -= processed;
  807. }
  808. else
  809. {
  810. unsigned rem = p->tempBufSize, lookAhead = 0;
  811. while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
  812. p->tempBuf[rem++] = src[lookAhead++];
  813. p->tempBufSize = rem;
  814. if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  815. {
  816. int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
  817. if (dummyRes == DUMMY_ERROR)
  818. {
  819. (*srcLen) += lookAhead;
  820. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  821. return SZ_OK;
  822. }
  823. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  824. {
  825. *status = LZMA_STATUS_NOT_FINISHED;
  826. return SZ_ERROR_DATA;
  827. }
  828. }
  829. p->buf = p->tempBuf;
  830. if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
  831. return SZ_ERROR_DATA;
  832. {
  833. unsigned kkk = (unsigned)(p->buf - p->tempBuf);
  834. if (rem < kkk)
  835. return SZ_ERROR_FAIL; /* some internal error */
  836. rem -= kkk;
  837. if (lookAhead < rem)
  838. return SZ_ERROR_FAIL; /* some internal error */
  839. lookAhead -= rem;
  840. }
  841. (*srcLen) += lookAhead;
  842. src += lookAhead;
  843. inSize -= lookAhead;
  844. p->tempBufSize = 0;
  845. }
  846. }
  847. if (p->code == 0)
  848. *status = LZMA_STATUS_FINISHED_WITH_MARK;
  849. return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
  850. }
  851. SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
  852. {
  853. SizeT outSize = *destLen;
  854. SizeT inSize = *srcLen;
  855. *srcLen = *destLen = 0;
  856. for (;;)
  857. {
  858. SizeT inSizeCur = inSize, outSizeCur, dicPos;
  859. ELzmaFinishMode curFinishMode;
  860. SRes res;
  861. if (p->dicPos == p->dicBufSize)
  862. p->dicPos = 0;
  863. dicPos = p->dicPos;
  864. if (outSize > p->dicBufSize - dicPos)
  865. {
  866. outSizeCur = p->dicBufSize;
  867. curFinishMode = LZMA_FINISH_ANY;
  868. }
  869. else
  870. {
  871. outSizeCur = dicPos + outSize;
  872. curFinishMode = finishMode;
  873. }
  874. res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
  875. src += inSizeCur;
  876. inSize -= inSizeCur;
  877. *srcLen += inSizeCur;
  878. outSizeCur = p->dicPos - dicPos;
  879. memcpy(dest, p->dic + dicPos, outSizeCur);
  880. dest += outSizeCur;
  881. outSize -= outSizeCur;
  882. *destLen += outSizeCur;
  883. if (res != 0)
  884. return res;
  885. if (outSizeCur == 0 || outSize == 0)
  886. return SZ_OK;
  887. }
  888. }
  889. void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
  890. {
  891. ISzAlloc_Free(alloc, p->probs);
  892. p->probs = NULL;
  893. }
  894. static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
  895. {
  896. ISzAlloc_Free(alloc, p->dic);
  897. p->dic = NULL;
  898. }
  899. void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
  900. {
  901. LzmaDec_FreeProbs(p, alloc);
  902. LzmaDec_FreeDict(p, alloc);
  903. }
  904. SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
  905. {
  906. UInt32 dicSize;
  907. Byte d;
  908. if (size < LZMA_PROPS_SIZE)
  909. return SZ_ERROR_UNSUPPORTED;
  910. else
  911. dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  912. if (dicSize < LZMA_DIC_MIN)
  913. dicSize = LZMA_DIC_MIN;
  914. p->dicSize = dicSize;
  915. d = data[0];
  916. if (d >= (9 * 5 * 5))
  917. return SZ_ERROR_UNSUPPORTED;
  918. p->lc = d % 9;
  919. d /= 9;
  920. p->pb = d / 5;
  921. p->lp = d % 5;
  922. return SZ_OK;
  923. }
  924. static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
  925. {
  926. UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  927. if (!p->probs || numProbs != p->numProbs)
  928. {
  929. LzmaDec_FreeProbs(p, alloc);
  930. p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
  931. p->numProbs = numProbs;
  932. if (!p->probs)
  933. return SZ_ERROR_MEM;
  934. }
  935. return SZ_OK;
  936. }
  937. SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
  938. {
  939. CLzmaProps propNew;
  940. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  941. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  942. p->prop = propNew;
  943. return SZ_OK;
  944. }
  945. SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
  946. {
  947. CLzmaProps propNew;
  948. SizeT dicBufSize;
  949. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  950. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  951. {
  952. UInt32 dictSize = propNew.dicSize;
  953. SizeT mask = ((UInt32)1 << 12) - 1;
  954. if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
  955. else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
  956. dicBufSize = ((SizeT)dictSize + mask) & ~mask;
  957. if (dicBufSize < dictSize)
  958. dicBufSize = dictSize;
  959. }
  960. if (!p->dic || dicBufSize != p->dicBufSize)
  961. {
  962. LzmaDec_FreeDict(p, alloc);
  963. p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
  964. if (!p->dic)
  965. {
  966. LzmaDec_FreeProbs(p, alloc);
  967. return SZ_ERROR_MEM;
  968. }
  969. }
  970. p->dicBufSize = dicBufSize;
  971. p->prop = propNew;
  972. return SZ_OK;
  973. }
  974. SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
  975. const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
  976. ELzmaStatus *status, ISzAllocPtr alloc)
  977. {
  978. CLzmaDec p;
  979. SRes res;
  980. SizeT outSize = *destLen, inSize = *srcLen;
  981. *destLen = *srcLen = 0;
  982. *status = LZMA_STATUS_NOT_SPECIFIED;
  983. if (inSize < RC_INIT_SIZE)
  984. return SZ_ERROR_INPUT_EOF;
  985. LzmaDec_Construct(&p);
  986. RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
  987. p.dic = dest;
  988. p.dicBufSize = outSize;
  989. LzmaDec_Init(&p);
  990. *srcLen = inSize;
  991. res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  992. *destLen = p.dicPos;
  993. if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
  994. res = SZ_ERROR_INPUT_EOF;
  995. LzmaDec_FreeProbs(&p, alloc);
  996. return res;
  997. }