123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781 |
- /**
- * \file geodesic.h
- * \brief Header for the geodesic routines in C
- *
- * This an implementation in C of the geodesic algorithms described in
- * - C. F. F. Karney,
- * <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
- * Algorithms for geodesics</a>,
- * J. Geodesy <b>87</b>, 43--55 (2013);
- * DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
- * 10.1007/s00190-012-0578-z</a>;
- * addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
- * geod-addenda.html</a>.
- * .
- * The principal advantages of these algorithms over previous ones (e.g.,
- * Vincenty, 1975) are
- * - accurate to round off for |<i>f</i>| < 1/50;
- * - the solution of the inverse problem is always found;
- * - differential and integral properties of geodesics are computed.
- *
- * The shortest path between two points on the ellipsoid at (\e lat1, \e
- * lon1) and (\e lat2, \e lon2) is called the geodesic. Its length is
- * \e s12 and the geodesic from point 1 to point 2 has forward azimuths
- * \e azi1 and \e azi2 at the two end points.
- *
- * Traditionally two geodesic problems are considered:
- * - the direct problem -- given \e lat1, \e lon1, \e s12, and \e azi1,
- * determine \e lat2, \e lon2, and \e azi2. This is solved by the function
- * geod_direct().
- * - the inverse problem -- given \e lat1, \e lon1, and \e lat2, \e lon2,
- * determine \e s12, \e azi1, and \e azi2. This is solved by the function
- * geod_inverse().
- *
- * The ellipsoid is specified by its equatorial radius \e a (typically in
- * meters) and flattening \e f. The routines are accurate to round off with
- * double precision arithmetic provided that |<i>f</i>| < 1/50; for the
- * WGS84 ellipsoid, the errors are less than 15 nanometers. (Reasonably
- * accurate results are obtained for |<i>f</i>| < 1/5.) For a prolate
- * ellipsoid, specify \e f < 0.
- *
- * The routines also calculate several other quantities of interest
- * - \e S12 is the area between the geodesic from point 1 to point 2 and the
- * equator; i.e., it is the area, measured counter-clockwise, of the
- * quadrilateral with corners (\e lat1,\e lon1), (0,\e lon1), (0,\e lon2),
- * and (\e lat2,\e lon2).
- * - \e m12, the reduced length of the geodesic is defined such that if
- * the initial azimuth is perturbed by \e dazi1 (radians) then the
- * second point is displaced by \e m12 \e dazi1 in the direction
- * perpendicular to the geodesic. On a curved surface the reduced
- * length obeys a symmetry relation, \e m12 + \e m21 = 0. On a flat
- * surface, we have \e m12 = \e s12.
- * - \e M12 and \e M21 are geodesic scales. If two geodesics are
- * parallel at point 1 and separated by a small distance \e dt, then
- * they are separated by a distance \e M12 \e dt at point 2. \e M21
- * is defined similarly (with the geodesics being parallel to one
- * another at point 2). On a flat surface, we have \e M12 = \e M21
- * = 1.
- * - \e a12 is the arc length on the auxiliary sphere. This is a
- * construct for converting the problem to one in spherical
- * trigonometry. \e a12 is measured in degrees. The spherical arc
- * length from one equator crossing to the next is always 180°.
- *
- * If points 1, 2, and 3 lie on a single geodesic, then the following
- * addition rules hold:
- * - \e s13 = \e s12 + \e s23
- * - \e a13 = \e a12 + \e a23
- * - \e S13 = \e S12 + \e S23
- * - \e m13 = \e m12 \e M23 + \e m23 \e M21
- * - \e M13 = \e M12 \e M23 − (1 − \e M12 \e M21) \e
- * m23 / \e m12
- * - \e M31 = \e M32 \e M21 − (1 − \e M23 \e M32) \e
- * m12 / \e m23
- *
- * The shortest distance returned by the solution of the inverse problem is
- * (obviously) uniquely defined. However, in a few special cases there are
- * multiple azimuths which yield the same shortest distance. Here is a
- * catalog of those cases:
- * - \e lat1 = −\e lat2 (with neither point at a pole). If \e azi1 =
- * \e azi2, the geodesic is unique. Otherwise there are two geodesics
- * and the second one is obtained by setting [\e azi1, \e azi2] = [\e
- * azi2, \e azi1], [\e M12, \e M21] = [\e M21, \e M12], \e S12 =
- * −\e S12. (This occurs when the longitude difference is near
- * ±180° for oblate ellipsoids.)
- * - \e lon2 = \e lon1 ± 180° (with neither point at a pole).
- * If \e azi1 = 0° or ±180°, the geodesic is unique.
- * Otherwise there are two geodesics and the second one is obtained by
- * setting [\e azi1, \e azi2] = [−\e azi1, −\e azi2], \e S12
- * = −\e S12. (This occurs when \e lat2 is near −\e lat1 for
- * prolate ellipsoids.)
- * - Points 1 and 2 at opposite poles. There are infinitely many
- * geodesics which can be generated by setting [\e azi1, \e azi2] =
- * [\e azi1, \e azi2] + [\e d, −\e d], for arbitrary \e d. (For
- * spheres, this prescription applies when points 1 and 2 are
- * antipodal.)
- * - \e s12 = 0 (coincident points). There are infinitely many geodesics
- * which can be generated by setting [\e azi1, \e azi2] = [\e azi1, \e
- * azi2] + [\e d, \e d], for arbitrary \e d.
- *
- * These routines are a simple transcription of the corresponding C++ classes
- * in <a href="http://geographiclib.sf.net"> GeographicLib</a>. The "class
- * data" is represented by the structs geod_geodesic, geod_geodesicline,
- * geod_polygon and pointers to these objects are passed as initial arguments
- * to the member functions. Most of the internal comments have been retained.
- * However, in the process of transcription some documentation has been lost
- * and the documentation for the C++ classes, GeographicLib::Geodesic,
- * GeographicLib::GeodesicLine, and GeographicLib::PolygonAreaT, should be
- * consulted. The C++ code remains the "reference implementation". Think
- * twice about restructuring the internals of the C code since this may make
- * porting fixes from the C++ code more difficult.
- *
- * Copyright (c) Charles Karney (2012-2014) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * http://geographiclib.sourceforge.net/
- *
- * This library was distributed with
- * <a href="../index.html">GeographicLib</a> 1.40.
- **********************************************************************/
- #if !defined(GEODESIC_H)
- #define GEODESIC_H 1
- /**
- * The major version of the geodesic library. (This tracks the version of
- * GeographicLib.)
- **********************************************************************/
- #define GEODESIC_VERSION_MAJOR 1
- /**
- * The minor version of the geodesic library. (This tracks the version of
- * GeographicLib.)
- **********************************************************************/
- #define GEODESIC_VERSION_MINOR 40
- /**
- * The patch level of the geodesic library. (This tracks the version of
- * GeographicLib.)
- **********************************************************************/
- #define GEODESIC_VERSION_PATCH 0
- #if defined(__cplusplus)
- extern "C" {
- #endif
- /**
- * The struct containing information about the ellipsoid. This must be
- * initialized by geod_init() before use.
- **********************************************************************/
- struct geod_geodesic {
- double a; /**< the equatorial radius */
- double f; /**< the flattening */
- /**< @cond SKIP */
- double f1, e2, ep2, n, b, c2, etol2;
- double A3x[6], C3x[15], C4x[21];
- /**< @endcond */
- };
- /**
- * The struct containing information about a single geodesic. This must be
- * initialized by geod_lineinit() before use.
- **********************************************************************/
- struct geod_geodesicline {
- double lat1; /**< the starting latitude */
- double lon1; /**< the starting longitude */
- double azi1; /**< the starting azimuth */
- double a; /**< the equatorial radius */
- double f; /**< the flattening */
- /**< @cond SKIP */
- double b, c2, f1, salp0, calp0, k2,
- salp1, calp1, ssig1, csig1, dn1, stau1, ctau1, somg1, comg1,
- A1m1, A2m1, A3c, B11, B21, B31, A4, B41;
- double C1a[6+1], C1pa[6+1], C2a[6+1], C3a[6], C4a[6];
- /**< @endcond */
- unsigned caps; /**< the capabilities */
- };
- /**
- * The struct for accumulating information about a geodesic polygon. This is
- * used for computing the perimeter and area of a polygon. This must be
- * initialized by geod_polygon_init() before use.
- **********************************************************************/
- struct geod_polygon {
- double lat; /**< the current latitude */
- double lon; /**< the current longitude */
- /**< @cond SKIP */
- double lat0;
- double lon0;
- double A[2];
- double P[2];
- int polyline;
- int crossings;
- /**< @endcond */
- unsigned num; /**< the number of points so far */
- };
- /**
- * Initialize a geod_geodesic object.
- *
- * @param[out] g a pointer to the object to be initialized.
- * @param[in] a the equatorial radius (meters).
- * @param[in] f the flattening.
- **********************************************************************/
- void geod_init(struct geod_geodesic* g, double a, double f);
- /**
- * Initialize a geod_geodesicline object.
- *
- * @param[out] l a pointer to the object to be initialized.
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] caps bitor'ed combination of geod_mask() values specifying the
- * capabilities the geod_geodesicline object should possess, i.e., which
- * quantities can be returned in calls to geod_position() and
- * geod_genposition().
- *
- * \e g must have been initialized with a call to geod_init(). \e lat1
- * should be in the range [−90°, 90°]; \e lon1 and \e azi1
- * should be in the range [−540°, 540°).
- *
- * The geod_mask values are [see geod_mask()]:
- * - \e caps |= GEOD_LATITUDE for the latitude \e lat2; this is
- * added automatically,
- * - \e caps |= GEOD_LONGITUDE for the latitude \e lon2,
- * - \e caps |= GEOD_AZIMUTH for the latitude \e azi2; this is
- * added automatically,
- * - \e caps |= GEOD_DISTANCE for the distance \e s12,
- * - \e caps |= GEOD_REDUCEDLENGTH for the reduced length \e m12,
- * - \e caps |= GEOD_GEODESICSCALE for the geodesic scales \e M12
- * and \e M21,
- * - \e caps |= GEOD_AREA for the area \e S12,
- * - \e caps |= GEOD_DISTANCE_IN permits the length of the
- * geodesic to be given in terms of \e s12; without this capability the
- * length can only be specified in terms of arc length.
- * .
- * A value of \e caps = 0 is treated as GEOD_LATITUDE | GEOD_LONGITUDE |
- * GEOD_AZIMUTH | GEOD_DISTANCE_IN (to support the solution of the "standard"
- * direct problem).
- **********************************************************************/
- void geod_lineinit(struct geod_geodesicline* l,
- const struct geod_geodesic* g,
- double lat1, double lon1, double azi1, unsigned caps);
- /**
- * Solve the direct geodesic problem.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[out] plat2 pointer to the latitude of point 2 (degrees).
- * @param[out] plon2 pointer to the longitude of point 2 (degrees).
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- *
- * \e g must have been initialized with a call to geod_init(). \e lat1
- * should be in the range [−90°, 90°]; \e lon1 and \e azi1
- * should be in the range [−540°, 540°). The values of \e lon2
- * and \e azi2 returned are in the range [−180°, 180°). Any of
- * the "return" arguments \e plat2, etc., may be replaced by 0, if you do not
- * need some quantities computed.
- *
- * If either point is at a pole, the azimuth is defined by keeping the
- * longitude fixed, writing \e lat = ±(90° − ε), and
- * taking the limit ε → 0+. An arc length greater that 180°
- * signifies a geodesic which is not a shortest path. (For a prolate
- * ellipsoid, an additional condition is necessary for a shortest path: the
- * longitudinal extent must not exceed of 180°.)
- *
- * Example, determine the point 10000 km NE of JFK:
- @code
- struct geod_geodesic g;
- double lat, lon;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_direct(&g, 40.64, -73.78, 45.0, 10e6, &lat, &lon, 0);
- printf("%.5f %.5f\n", lat, lon);
- @endcode
- **********************************************************************/
- void geod_direct(const struct geod_geodesic* g,
- double lat1, double lon1, double azi1, double s12,
- double* plat2, double* plon2, double* pazi2);
- /**
- * Solve the inverse geodesic problem.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[out] ps12 pointer to the distance between point 1 and point 2
- * (meters).
- * @param[out] pazi1 pointer to the azimuth at point 1 (degrees).
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- *
- * \e g must have been initialized with a call to geod_init(). \e lat1
- * and \e lat2 should be in the range [−90°, 90°]; \e lon1 and
- * \e lon2 should be in the range [−540°, 540°). The values of
- * \e azi1 and \e azi2 returned are in the range [−180°, 180°).
- * Any of the "return" arguments \e ps12, etc., may be replaced by 0, if you
- * do not need some quantities computed.
- *
- * If either point is at a pole, the azimuth is defined by keeping the
- * longitude fixed, writing \e lat = ±(90° − ε), and
- * taking the limit ε → 0+.
- *
- * The solution to the inverse problem is found using Newton's method. If
- * this fails to converge (this is very unlikely in geodetic applications
- * but does occur for very eccentric ellipsoids), then the bisection method
- * is used to refine the solution.
- *
- * Example, determine the distance between JFK and Singapore Changi Airport:
- @code
- struct geod_geodesic g;
- double s12;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_inverse(&g, 40.64, -73.78, 1.36, 103.99, &s12, 0, 0);
- printf("%.3f\n", s12);
- @endcode
- **********************************************************************/
- void geod_inverse(const struct geod_geodesic* g,
- double lat1, double lon1, double lat2, double lon2,
- double* ps12, double* pazi1, double* pazi2);
- /**
- * Compute the position along a geod_geodesicline.
- *
- * @param[in] l a pointer to the geod_geodesicline object specifying the
- * geodesic line.
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[out] plat2 pointer to the latitude of point 2 (degrees).
- * @param[out] plon2 pointer to the longitude of point 2 (degrees); requires
- * that \e l was initialized with \e caps |= GEOD_LONGITUDE.
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- *
- * \e l must have been initialized with a call to geod_lineinit() with \e
- * caps |= GEOD_DISTANCE_IN. The values of \e lon2 and \e azi2 returned are
- * in the range [−180°, 180°). Any of the "return" arguments
- * \e plat2, etc., may be replaced by 0, if you do not need some quantities
- * computed.
- *
- * Example, compute way points between JFK and Singapore Changi Airport
- * the "obvious" way using geod_direct():
- @code
- struct geod_geodesic g;
- double s12, azi1, lat[101],lon[101];
- int i;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_inverse(&g, 40.64, -73.78, 1.36, 103.99, &s12, &azi1, 0);
- for (i = 0; i < 101; ++i) {
- geod_direct(&g, 40.64, -73.78, azi1, i * s12 * 0.01, lat + i, lon + i, 0);
- printf("%.5f %.5f\n", lat[i], lon[i]);
- }
- @endcode
- * A faster way using geod_position():
- @code
- struct geod_geodesic g;
- struct geod_geodesicline l;
- double s12, azi1, lat[101],lon[101];
- int i;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_inverse(&g, 40.64, -73.78, 1.36, 103.99, &s12, &azi1, 0);
- geod_lineinit(&l, &g, 40.64, -73.78, azi1, 0);
- for (i = 0; i < 101; ++i) {
- geod_position(&l, i * s12 * 0.01, lat + i, lon + i, 0);
- printf("%.5f %.5f\n", lat[i], lon[i]);
- }
- @endcode
- **********************************************************************/
- void geod_position(const struct geod_geodesicline* l, double s12,
- double* plat2, double* plon2, double* pazi2);
- /**
- * The general direct geodesic problem.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] flags bitor'ed combination of geod_flags(); \e flags &
- * GEOD_ARCMODE determines the meaning of \e s12_a12 and \e flags &
- * GEOD_LONG_NOWRAP prevents the value of \e lon2 being wrapped into
- * the range [−180°, 180°).
- * @param[in] s12_a12 if \e flags & GEOD_ARCMODE is 0, this is the distance
- * between point 1 and point 2 (meters); otherwise it is the arc length
- * between point 1 and point 2 (degrees); it can be negative.
- * @param[out] plat2 pointer to the latitude of point 2 (degrees).
- * @param[out] plon2 pointer to the longitude of point 2 (degrees).
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- * @param[out] ps12 pointer to the distance between point 1 and point 2
- * (meters).
- * @param[out] pm12 pointer to the reduced length of geodesic (meters).
- * @param[out] pM12 pointer to the geodesic scale of point 2 relative to
- * point 1 (dimensionless).
- * @param[out] pM21 pointer to the geodesic scale of point 1 relative to
- * point 2 (dimensionless).
- * @param[out] pS12 pointer to the area under the geodesic
- * (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * \e g must have been initialized with a call to geod_init(). \e lat1
- * should be in the range [−90°, 90°]; \e lon1 and \e azi1
- * should be in the range [−540°, 540°). The function
- * value \e a12 equals \e s12_a12 if \e flags & GEOD_ARCMODE. Any of the
- * "return" arguments \e plat2, etc., may be replaced by 0, if you do not
- * need some quantities computed.
- *
- * With \e flags & GEOD_LONG_NOWRAP bit set, the quantity \e lon2 −
- * \e lon1 indicates how many times the geodesic wrapped around the
- * ellipsoid. Because \e lon2 might be outside the normal allowed range
- * for longitudes, [−540°, 540°), be sure to normalize it,
- * e.g., with fmod(\e lon2, 360.0) before using it in subsequent
- * calculations
- **********************************************************************/
- double geod_gendirect(const struct geod_geodesic* g,
- double lat1, double lon1, double azi1,
- unsigned flags, double s12_a12,
- double* plat2, double* plon2, double* pazi2,
- double* ps12, double* pm12, double* pM12, double* pM21,
- double* pS12);
- /**
- * The general inverse geodesic calculation.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[out] ps12 pointer to the distance between point 1 and point 2
- * (meters).
- * @param[out] pazi1 pointer to the azimuth at point 1 (degrees).
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- * @param[out] pm12 pointer to the reduced length of geodesic (meters).
- * @param[out] pM12 pointer to the geodesic scale of point 2 relative to
- * point 1 (dimensionless).
- * @param[out] pM21 pointer to the geodesic scale of point 1 relative to
- * point 2 (dimensionless).
- * @param[out] pS12 pointer to the area under the geodesic
- * (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * \e g must have been initialized with a call to geod_init(). \e lat1
- * and \e lat2 should be in the range [−90°, 90°]; \e lon1 and
- * \e lon2 should be in the range [−540°, 540°). Any of the
- * "return" arguments \e ps12, etc., may be replaced by 0, if you do not need
- * some quantities computed.
- **********************************************************************/
- double geod_geninverse(const struct geod_geodesic* g,
- double lat1, double lon1, double lat2, double lon2,
- double* ps12, double* pazi1, double* pazi2,
- double* pm12, double* pM12, double* pM21,
- double* pS12);
- /**
- * The general position function.
- *
- * @param[in] l a pointer to the geod_geodesicline object specifying the
- * geodesic line.
- * @param[in] flags bitor'ed combination of geod_flags(); \e flags &
- * GEOD_ARCMODE determines the meaning of \e s12_a12 and \e flags &
- * GEOD_LONG_NOWRAP prevents the value of \e lon2 being wrapped into
- * the range [−180°, 180°); if \e flags & GEOD_ARCMODE is
- * 0, then \e l must have been initialized with \e caps |=
- * GEOD_DISTANCE_IN.
- * @param[in] s12_a12 if \e flags & GEOD_ARCMODE is 0, this is the
- * distance between point 1 and point 2 (meters); otherwise it is the
- * arc length between point 1 and point 2 (degrees); it can be
- * negative.
- * @param[out] plat2 pointer to the latitude of point 2 (degrees).
- * @param[out] plon2 pointer to the longitude of point 2 (degrees); requires
- * that \e l was initialized with \e caps |= GEOD_LONGITUDE.
- * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees).
- * @param[out] ps12 pointer to the distance between point 1 and point 2
- * (meters); requires that \e l was initialized with \e caps |=
- * GEOD_DISTANCE.
- * @param[out] pm12 pointer to the reduced length of geodesic (meters);
- * requires that \e l was initialized with \e caps |= GEOD_REDUCEDLENGTH.
- * @param[out] pM12 pointer to the geodesic scale of point 2 relative to
- * point 1 (dimensionless); requires that \e l was initialized with \e caps
- * |= GEOD_GEODESICSCALE.
- * @param[out] pM21 pointer to the geodesic scale of point 1 relative to
- * point 2 (dimensionless); requires that \e l was initialized with \e caps
- * |= GEOD_GEODESICSCALE.
- * @param[out] pS12 pointer to the area under the geodesic
- * (meters<sup>2</sup>); requires that \e l was initialized with \e caps |=
- * GEOD_AREA.
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * \e l must have been initialized with a call to geod_lineinit() with \e
- * caps |= GEOD_DISTANCE_IN. The value \e azi2 returned is in the range
- * [−180°, 180°). Any of the "return" arguments \e plat2,
- * etc., may be replaced by 0, if you do not need some quantities
- * computed. Requesting a value which \e l is not capable of computing
- * is not an error; the corresponding argument will not be altered.
- *
- * With \e flags & GEOD_LONG_NOWRAP bit set, the quantity \e lon2 −
- * \e lon1 indicates how many times the geodesic wrapped around the
- * ellipsoid. Because \e lon2 might be outside the normal allowed range
- * for longitudes, [−540°, 540°), be sure to normalize it,
- * e.g., with fmod(\e lon2, 360.0) before using it in subsequent
- * calculations
- *
- * Example, compute way points between JFK and Singapore Changi Airport
- * using geod_genposition(). In this example, the points are evenly space in
- * arc length (and so only approximately equally space in distance). This is
- * faster than using geod_position() would be appropriate if drawing the path
- * on a map.
- @code
- struct geod_geodesic g;
- struct geod_geodesicline l;
- double a12, azi1, lat[101], lon[101];
- int i;
- geod_init(&g, 6378137, 1/298.257223563);
- a12 = geod_geninverse(&g, 40.64, -73.78, 1.36, 103.99,
- 0, &azi1, 0, 0, 0, 0, 0);
- geod_lineinit(&l, &g, 40.64, -73.78, azi1, GEOD_LATITUDE | GEOD_LONGITUDE);
- for (i = 0; i < 101; ++i) {
- geod_genposition(&l, 1, i * a12 * 0.01,
- lat + i, lon + i, 0, 0, 0, 0, 0, 0);
- printf("%.5f %.5f\n", lat[i], lon[i]);
- }
- @endcode
- **********************************************************************/
- double geod_genposition(const struct geod_geodesicline* l,
- unsigned flags, double s12_a12,
- double* plat2, double* plon2, double* pazi2,
- double* ps12, double* pm12,
- double* pM12, double* pM21,
- double* pS12);
- /**
- * Initialize a geod_polygon object.
- *
- * @param[out] p a pointer to the object to be initialized.
- * @param[in] polylinep non-zero if a polyline instead of a polygon.
- *
- * If \e polylinep is zero, then the sequence of vertices and edges added by
- * geod_polygon_addpoint() and geod_polygon_addedge() define a polygon and
- * the perimeter and area are returned by geod_polygon_compute(). If \e
- * polylinep is non-zero, then the vertices and edges define a polyline and
- * only the perimeter is returned by geod_polygon_compute().
- *
- * The area and perimeter are accumulated at two times the standard floating
- * point precision to guard against the loss of accuracy with many-sided
- * polygons. At any point you can ask for the perimeter and area so far.
- *
- * An example of the use of this function is given in the documentation for
- * geod_polygon_compute().
- **********************************************************************/
- void geod_polygon_init(struct geod_polygon* p, int polylinep);
- /**
- * Add a point to the polygon or polyline.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in,out] p a pointer to the geod_polygon object specifying the
- * polygon.
- * @param[in] lat the latitude of the point (degrees).
- * @param[in] lon the longitude of the point (degrees).
- *
- * \e g and \e p must have been initialized with calls to geod_init() and
- * geod_polygon_init(), respectively. The same \e g must be used for all the
- * points and edges in a polygon. \e lat should be in the range
- * [−90°, 90°] and \e lon should be in the range
- * [−540°, 540°).
- *
- * An example of the use of this function is given in the documentation for
- * geod_polygon_compute().
- **********************************************************************/
- void geod_polygon_addpoint(const struct geod_geodesic* g,
- struct geod_polygon* p,
- double lat, double lon);
- /**
- * Add an edge to the polygon or polyline.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in,out] p a pointer to the geod_polygon object specifying the
- * polygon.
- * @param[in] azi azimuth at current point (degrees).
- * @param[in] s distance from current point to next point (meters).
- *
- * \e g and \e p must have been initialized with calls to geod_init() and
- * geod_polygon_init(), respectively. The same \e g must be used for all the
- * points and edges in a polygon. \e azi should be in the range
- * [−540°, 540°). This does nothing if no points have been
- * added yet. The \e lat and \e lon fields of \e p give the location of
- * the new vertex.
- **********************************************************************/
- void geod_polygon_addedge(const struct geod_geodesic* g,
- struct geod_polygon* p,
- double azi, double s);
- /**
- * Return the results for a polygon.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] p a pointer to the geod_polygon object specifying the polygon.
- * @param[in] reverse if non-zero then clockwise (instead of
- * counter-clockwise) traversal counts as a positive area.
- * @param[in] sign if non-zero then return a signed result for the area if
- * the polygon is traversed in the "wrong" direction instead of returning
- * the area for the rest of the earth.
- * @param[out] pA pointer to the area of the polygon (meters<sup>2</sup>);
- * only set if \e polyline is non-zero in the call to geod_polygon_init().
- * @param[out] pP pointer to the perimeter of the polygon or length of the
- * polyline (meters).
- * @return the number of points.
- *
- * The area and perimeter are accumulated at two times the standard floating
- * point precision to guard against the loss of accuracy with many-sided
- * polygons. Only simple polygons (which are not self-intersecting) are
- * allowed. There's no need to "close" the polygon by repeating the first
- * vertex. Set \e pA or \e pP to zero, if you do not want the corresponding
- * quantity returned.
- *
- * Example, compute the perimeter and area of the geodesic triangle with
- * vertices (0°N,0°E), (0°N,90°E), (90°N,0°E).
- @code
- double A, P;
- int n;
- struct geod_geodesic g;
- struct geod_polygon p;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_polygon_init(&p, 0);
- geod_polygon_addpoint(&g, &p, 0, 0);
- geod_polygon_addpoint(&g, &p, 0, 90);
- geod_polygon_addpoint(&g, &p, 90, 0);
- n = geod_polygon_compute(&g, &p, 0, 1, &A, &P);
- printf("%d %.8f %.3f\n", n, P, A);
- @endcode
- **********************************************************************/
- unsigned geod_polygon_compute(const struct geod_geodesic* g,
- const struct geod_polygon* p,
- int reverse, int sign,
- double* pA, double* pP);
- /**
- * Return the results assuming a tentative final test point is added;
- * however, the data for the test point is not saved. This lets you report a
- * running result for the perimeter and area as the user moves the mouse
- * cursor. Ordinary floating point arithmetic is used to accumulate the data
- * for the test point; thus the area and perimeter returned are less accurate
- * than if geod_polygon_addpoint() and geod_polygon_compute() are used.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] p a pointer to the geod_polygon object specifying the polygon.
- * @param[in] lat the latitude of the test point (degrees).
- * @param[in] lon the longitude of the test point (degrees).
- * @param[in] reverse if non-zero then clockwise (instead of
- * counter-clockwise) traversal counts as a positive area.
- * @param[in] sign if non-zero then return a signed result for the area if
- * the polygon is traversed in the "wrong" direction instead of returning
- * the area for the rest of the earth.
- * @param[out] pA pointer to the area of the polygon (meters<sup>2</sup>);
- * only set if \e polyline is non-zero in the call to geod_polygon_init().
- * @param[out] pP pointer to the perimeter of the polygon or length of the
- * polyline (meters).
- * @return the number of points.
- *
- * \e lat should be in the range [−90°, 90°] and \e
- * lon should be in the range [−540°, 540°).
- **********************************************************************/
- unsigned geod_polygon_testpoint(const struct geod_geodesic* g,
- const struct geod_polygon* p,
- double lat, double lon,
- int reverse, int sign,
- double* pA, double* pP);
- /**
- * Return the results assuming a tentative final test point is added via an
- * azimuth and distance; however, the data for the test point is not saved.
- * This lets you report a running result for the perimeter and area as the
- * user moves the mouse cursor. Ordinary floating point arithmetic is used
- * to accumulate the data for the test point; thus the area and perimeter
- * returned are less accurate than if geod_polygon_addedge() and
- * geod_polygon_compute() are used.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] p a pointer to the geod_polygon object specifying the polygon.
- * @param[in] azi azimuth at current point (degrees).
- * @param[in] s distance from current point to final test point (meters).
- * @param[in] reverse if non-zero then clockwise (instead of
- * counter-clockwise) traversal counts as a positive area.
- * @param[in] sign if non-zero then return a signed result for the area if
- * the polygon is traversed in the "wrong" direction instead of returning
- * the area for the rest of the earth.
- * @param[out] pA pointer to the area of the polygon (meters<sup>2</sup>);
- * only set if \e polyline is non-zero in the call to geod_polygon_init().
- * @param[out] pP pointer to the perimeter of the polygon or length of the
- * polyline (meters).
- * @return the number of points.
- *
- * \e azi should be in the range [−540°, 540°).
- **********************************************************************/
- unsigned geod_polygon_testedge(const struct geod_geodesic* g,
- const struct geod_polygon* p,
- double azi, double s,
- int reverse, int sign,
- double* pA, double* pP);
- /**
- * A simple interface for computing the area of a geodesic polygon.
- *
- * @param[in] g a pointer to the geod_geodesic object specifying the
- * ellipsoid.
- * @param[in] lats an array of latitudes of the polygon vertices (degrees).
- * @param[in] lons an array of longitudes of the polygon vertices (degrees).
- * @param[in] n the number of vertices.
- * @param[out] pA pointer to the area of the polygon (meters<sup>2</sup>).
- * @param[out] pP pointer to the perimeter of the polygon (meters).
- *
- * \e lats should be in the range [−90°, 90°]; \e lons should
- * be in the range [−540°, 540°).
- *
- * Only simple polygons (which are not self-intersecting) are allowed.
- * There's no need to "close" the polygon by repeating the first vertex. The
- * area returned is signed with counter-clockwise traversal being treated as
- * positive.
- *
- * Example, compute the area of Antarctica:
- @code
- double
- lats[] = {-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7,
- -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7},
- lons[] = {-74, -102, -102, -131, -163, 163, 172, 140, 113,
- 88, 59, 25, -4, -14, -33, -46, -61};
- struct geod_geodesic g;
- double A, P;
- geod_init(&g, 6378137, 1/298.257223563);
- geod_polygonarea(&g, lats, lons, (sizeof lats) / (sizeof lats[0]), &A, &P);
- printf("%.0f %.2f\n", A, P);
- @endcode
- **********************************************************************/
- void geod_polygonarea(const struct geod_geodesic* g,
- double lats[], double lons[], int n,
- double* pA, double* pP);
- /**
- * mask values for the \e caps argument to geod_lineinit().
- **********************************************************************/
- enum geod_mask {
- GEOD_NONE = 0U, /**< Calculate nothing */
- GEOD_LATITUDE = 1U<<7 | 0U, /**< Calculate latitude */
- GEOD_LONGITUDE = 1U<<8 | 1U<<3, /**< Calculate longitude */
- GEOD_AZIMUTH = 1U<<9 | 0U, /**< Calculate azimuth */
- GEOD_DISTANCE = 1U<<10 | 1U<<0, /**< Calculate distance */
- GEOD_DISTANCE_IN = 1U<<11 | 1U<<0 | 1U<<1, /**< Allow distance as input */
- GEOD_REDUCEDLENGTH= 1U<<12 | 1U<<0 | 1U<<2, /**< Calculate reduced length */
- GEOD_GEODESICSCALE= 1U<<13 | 1U<<0 | 1U<<2, /**< Calculate geodesic scale */
- GEOD_AREA = 1U<<14 | 1U<<4, /**< Calculate reduced length */
- GEOD_ALL = 0x7F80U| 0x1FU /**< Calculate everything */
- };
- /**
- * flag values for the \e flags argument to geod_gendirect() and
- * geod_genposition()
- **********************************************************************/
- enum geod_flags {
- GEOD_NOFLAGS = 0U, /**< No flags */
- GEOD_ARCMODE = 1U<<0, /**< Position given in terms of arc distance */
- GEOD_LONG_NOWRAP = 1U<<15 /**< Don't wrap longitude */
- };
- #if defined(__cplusplus)
- }
- #endif
- #endif
|