sha2.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. /*
  2. * FIPS 180-2 SHA-224/256/384/512 implementation
  3. * Last update: 02/02/2007
  4. * Issue date: 04/30/2005
  5. *
  6. * Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
  7. * All rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. * 2. Redistributions in binary form must reproduce the above copyright
  15. * notice, this list of conditions and the following disclaimer in the
  16. * documentation and/or other materials provided with the distribution.
  17. * 3. Neither the name of the project nor the names of its contributors
  18. * may be used to endorse or promote products derived from this software
  19. * without specific prior written permission.
  20. *
  21. * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
  22. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  23. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  24. * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
  25. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  26. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  27. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  28. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  29. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  30. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  31. * SUCH DAMAGE.
  32. */
  33. #if 0
  34. #define UNROLL_LOOPS /* Enable loops unrolling */
  35. #endif
  36. #include <string.h>
  37. #include "sha2.h"
  38. #define SHFR(x, n) (x >> n)
  39. #define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
  40. #define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
  41. #define CH(x, y, z) ((x & y) ^ (~x & z))
  42. #define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
  43. #define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
  44. #define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
  45. #define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
  46. #define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
  47. #define SHA512_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
  48. #define SHA512_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
  49. #define SHA512_F3(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHFR(x, 7))
  50. #define SHA512_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x, 6))
  51. #define UNPACK32(x, str) \
  52. { \
  53. *((str) + 3) = (uint8) ((x) ); \
  54. *((str) + 2) = (uint8) ((x) >> 8); \
  55. *((str) + 1) = (uint8) ((x) >> 16); \
  56. *((str) + 0) = (uint8) ((x) >> 24); \
  57. }
  58. #define PACK32(str, x) \
  59. { \
  60. *(x) = ((uint32) *((str) + 3) ) \
  61. | ((uint32) *((str) + 2) << 8) \
  62. | ((uint32) *((str) + 1) << 16) \
  63. | ((uint32) *((str) + 0) << 24); \
  64. }
  65. #define UNPACK64(x, str) \
  66. { \
  67. *((str) + 7) = (uint8) ((x) ); \
  68. *((str) + 6) = (uint8) ((x) >> 8); \
  69. *((str) + 5) = (uint8) ((x) >> 16); \
  70. *((str) + 4) = (uint8) ((x) >> 24); \
  71. *((str) + 3) = (uint8) ((x) >> 32); \
  72. *((str) + 2) = (uint8) ((x) >> 40); \
  73. *((str) + 1) = (uint8) ((x) >> 48); \
  74. *((str) + 0) = (uint8) ((x) >> 56); \
  75. }
  76. #define PACK64(str, x) \
  77. { \
  78. *(x) = ((uint64) *((str) + 7) ) \
  79. | ((uint64) *((str) + 6) << 8) \
  80. | ((uint64) *((str) + 5) << 16) \
  81. | ((uint64) *((str) + 4) << 24) \
  82. | ((uint64) *((str) + 3) << 32) \
  83. | ((uint64) *((str) + 2) << 40) \
  84. | ((uint64) *((str) + 1) << 48) \
  85. | ((uint64) *((str) + 0) << 56); \
  86. }
  87. /* Macros used for loops unrolling */
  88. #define SHA256_SCR(i) \
  89. { \
  90. w[i] = SHA256_F4(w[i - 2]) + w[i - 7] \
  91. + SHA256_F3(w[i - 15]) + w[i - 16]; \
  92. }
  93. #define SHA512_SCR(i) \
  94. { \
  95. w[i] = SHA512_F4(w[i - 2]) + w[i - 7] \
  96. + SHA512_F3(w[i - 15]) + w[i - 16]; \
  97. }
  98. #define SHA256_EXP(a, b, c, d, e, f, g, h, j) \
  99. { \
  100. t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
  101. + sha256_k[j] + w[j]; \
  102. t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
  103. wv[d] += t1; \
  104. wv[h] = t1 + t2; \
  105. }
  106. #define SHA512_EXP(a, b, c, d, e, f, g ,h, j) \
  107. { \
  108. t1 = wv[h] + SHA512_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) \
  109. + sha512_k[j] + w[j]; \
  110. t2 = SHA512_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \
  111. wv[d] += t1; \
  112. wv[h] = t1 + t2; \
  113. }
  114. uint32 sha224_h0[8] =
  115. {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
  116. 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
  117. uint32 sha256_h0[8] =
  118. {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  119. 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
  120. uint64 sha384_h0[8] =
  121. {li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
  122. li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
  123. li_64(67332667ffc00b31), li_64(8eb44a8768581511),
  124. li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)};
  125. uint64 sha512_h0[8] =
  126. {li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
  127. li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
  128. li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
  129. li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)};
  130. uint32 sha256_k[64] =
  131. {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  132. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  133. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  134. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  135. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  136. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  137. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  138. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  139. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  140. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  141. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  142. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  143. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  144. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  145. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  146. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
  147. uint64 sha512_k[80] =
  148. {li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
  149. li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
  150. li_64(3956c25bf348b538), li_64(59f111f1b605d019),
  151. li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
  152. li_64(d807aa98a3030242), li_64(12835b0145706fbe),
  153. li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
  154. li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
  155. li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
  156. li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
  157. li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
  158. li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
  159. li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
  160. li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
  161. li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
  162. li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
  163. li_64(06ca6351e003826f), li_64(142929670a0e6e70),
  164. li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
  165. li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
  166. li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
  167. li_64(81c2c92e47edaee6), li_64(92722c851482353b),
  168. li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
  169. li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
  170. li_64(d192e819d6ef5218), li_64(d69906245565a910),
  171. li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
  172. li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
  173. li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
  174. li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
  175. li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
  176. li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
  177. li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
  178. li_64(90befffa23631e28), li_64(a4506cebde82bde9),
  179. li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
  180. li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
  181. li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
  182. li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
  183. li_64(113f9804bef90dae), li_64(1b710b35131c471b),
  184. li_64(28db77f523047d84), li_64(32caab7b40c72493),
  185. li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
  186. li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
  187. li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)};
  188. /* SHA-256 functions */
  189. void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
  190. unsigned int block_nb)
  191. {
  192. uint32 w[64];
  193. uint32 wv[8];
  194. uint32 t1, t2;
  195. const unsigned char *sub_block;
  196. int i;
  197. #ifndef UNROLL_LOOPS
  198. int j;
  199. #endif
  200. for (i = 0; i < (int) block_nb; i++) {
  201. sub_block = message + (i << 6);
  202. #ifndef UNROLL_LOOPS
  203. for (j = 0; j < 16; j++) {
  204. PACK32(&sub_block[j << 2], &w[j]);
  205. }
  206. for (j = 16; j < 64; j++) {
  207. SHA256_SCR(j);
  208. }
  209. for (j = 0; j < 8; j++) {
  210. wv[j] = ctx->h[j];
  211. }
  212. for (j = 0; j < 64; j++) {
  213. t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
  214. + sha256_k[j] + w[j];
  215. t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
  216. wv[7] = wv[6];
  217. wv[6] = wv[5];
  218. wv[5] = wv[4];
  219. wv[4] = wv[3] + t1;
  220. wv[3] = wv[2];
  221. wv[2] = wv[1];
  222. wv[1] = wv[0];
  223. wv[0] = t1 + t2;
  224. }
  225. for (j = 0; j < 8; j++) {
  226. ctx->h[j] += wv[j];
  227. }
  228. #else
  229. PACK32(&sub_block[ 0], &w[ 0]); PACK32(&sub_block[ 4], &w[ 1]);
  230. PACK32(&sub_block[ 8], &w[ 2]); PACK32(&sub_block[12], &w[ 3]);
  231. PACK32(&sub_block[16], &w[ 4]); PACK32(&sub_block[20], &w[ 5]);
  232. PACK32(&sub_block[24], &w[ 6]); PACK32(&sub_block[28], &w[ 7]);
  233. PACK32(&sub_block[32], &w[ 8]); PACK32(&sub_block[36], &w[ 9]);
  234. PACK32(&sub_block[40], &w[10]); PACK32(&sub_block[44], &w[11]);
  235. PACK32(&sub_block[48], &w[12]); PACK32(&sub_block[52], &w[13]);
  236. PACK32(&sub_block[56], &w[14]); PACK32(&sub_block[60], &w[15]);
  237. SHA256_SCR(16); SHA256_SCR(17); SHA256_SCR(18); SHA256_SCR(19);
  238. SHA256_SCR(20); SHA256_SCR(21); SHA256_SCR(22); SHA256_SCR(23);
  239. SHA256_SCR(24); SHA256_SCR(25); SHA256_SCR(26); SHA256_SCR(27);
  240. SHA256_SCR(28); SHA256_SCR(29); SHA256_SCR(30); SHA256_SCR(31);
  241. SHA256_SCR(32); SHA256_SCR(33); SHA256_SCR(34); SHA256_SCR(35);
  242. SHA256_SCR(36); SHA256_SCR(37); SHA256_SCR(38); SHA256_SCR(39);
  243. SHA256_SCR(40); SHA256_SCR(41); SHA256_SCR(42); SHA256_SCR(43);
  244. SHA256_SCR(44); SHA256_SCR(45); SHA256_SCR(46); SHA256_SCR(47);
  245. SHA256_SCR(48); SHA256_SCR(49); SHA256_SCR(50); SHA256_SCR(51);
  246. SHA256_SCR(52); SHA256_SCR(53); SHA256_SCR(54); SHA256_SCR(55);
  247. SHA256_SCR(56); SHA256_SCR(57); SHA256_SCR(58); SHA256_SCR(59);
  248. SHA256_SCR(60); SHA256_SCR(61); SHA256_SCR(62); SHA256_SCR(63);
  249. wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
  250. wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
  251. wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
  252. wv[6] = ctx->h[6]; wv[7] = ctx->h[7];
  253. SHA256_EXP(0,1,2,3,4,5,6,7, 0); SHA256_EXP(7,0,1,2,3,4,5,6, 1);
  254. SHA256_EXP(6,7,0,1,2,3,4,5, 2); SHA256_EXP(5,6,7,0,1,2,3,4, 3);
  255. SHA256_EXP(4,5,6,7,0,1,2,3, 4); SHA256_EXP(3,4,5,6,7,0,1,2, 5);
  256. SHA256_EXP(2,3,4,5,6,7,0,1, 6); SHA256_EXP(1,2,3,4,5,6,7,0, 7);
  257. SHA256_EXP(0,1,2,3,4,5,6,7, 8); SHA256_EXP(7,0,1,2,3,4,5,6, 9);
  258. SHA256_EXP(6,7,0,1,2,3,4,5,10); SHA256_EXP(5,6,7,0,1,2,3,4,11);
  259. SHA256_EXP(4,5,6,7,0,1,2,3,12); SHA256_EXP(3,4,5,6,7,0,1,2,13);
  260. SHA256_EXP(2,3,4,5,6,7,0,1,14); SHA256_EXP(1,2,3,4,5,6,7,0,15);
  261. SHA256_EXP(0,1,2,3,4,5,6,7,16); SHA256_EXP(7,0,1,2,3,4,5,6,17);
  262. SHA256_EXP(6,7,0,1,2,3,4,5,18); SHA256_EXP(5,6,7,0,1,2,3,4,19);
  263. SHA256_EXP(4,5,6,7,0,1,2,3,20); SHA256_EXP(3,4,5,6,7,0,1,2,21);
  264. SHA256_EXP(2,3,4,5,6,7,0,1,22); SHA256_EXP(1,2,3,4,5,6,7,0,23);
  265. SHA256_EXP(0,1,2,3,4,5,6,7,24); SHA256_EXP(7,0,1,2,3,4,5,6,25);
  266. SHA256_EXP(6,7,0,1,2,3,4,5,26); SHA256_EXP(5,6,7,0,1,2,3,4,27);
  267. SHA256_EXP(4,5,6,7,0,1,2,3,28); SHA256_EXP(3,4,5,6,7,0,1,2,29);
  268. SHA256_EXP(2,3,4,5,6,7,0,1,30); SHA256_EXP(1,2,3,4,5,6,7,0,31);
  269. SHA256_EXP(0,1,2,3,4,5,6,7,32); SHA256_EXP(7,0,1,2,3,4,5,6,33);
  270. SHA256_EXP(6,7,0,1,2,3,4,5,34); SHA256_EXP(5,6,7,0,1,2,3,4,35);
  271. SHA256_EXP(4,5,6,7,0,1,2,3,36); SHA256_EXP(3,4,5,6,7,0,1,2,37);
  272. SHA256_EXP(2,3,4,5,6,7,0,1,38); SHA256_EXP(1,2,3,4,5,6,7,0,39);
  273. SHA256_EXP(0,1,2,3,4,5,6,7,40); SHA256_EXP(7,0,1,2,3,4,5,6,41);
  274. SHA256_EXP(6,7,0,1,2,3,4,5,42); SHA256_EXP(5,6,7,0,1,2,3,4,43);
  275. SHA256_EXP(4,5,6,7,0,1,2,3,44); SHA256_EXP(3,4,5,6,7,0,1,2,45);
  276. SHA256_EXP(2,3,4,5,6,7,0,1,46); SHA256_EXP(1,2,3,4,5,6,7,0,47);
  277. SHA256_EXP(0,1,2,3,4,5,6,7,48); SHA256_EXP(7,0,1,2,3,4,5,6,49);
  278. SHA256_EXP(6,7,0,1,2,3,4,5,50); SHA256_EXP(5,6,7,0,1,2,3,4,51);
  279. SHA256_EXP(4,5,6,7,0,1,2,3,52); SHA256_EXP(3,4,5,6,7,0,1,2,53);
  280. SHA256_EXP(2,3,4,5,6,7,0,1,54); SHA256_EXP(1,2,3,4,5,6,7,0,55);
  281. SHA256_EXP(0,1,2,3,4,5,6,7,56); SHA256_EXP(7,0,1,2,3,4,5,6,57);
  282. SHA256_EXP(6,7,0,1,2,3,4,5,58); SHA256_EXP(5,6,7,0,1,2,3,4,59);
  283. SHA256_EXP(4,5,6,7,0,1,2,3,60); SHA256_EXP(3,4,5,6,7,0,1,2,61);
  284. SHA256_EXP(2,3,4,5,6,7,0,1,62); SHA256_EXP(1,2,3,4,5,6,7,0,63);
  285. ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
  286. ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
  287. ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
  288. ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
  289. #endif /* !UNROLL_LOOPS */
  290. }
  291. }
  292. void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
  293. {
  294. sha256_ctx ctx;
  295. sha256_init(&ctx);
  296. sha256_update(&ctx, message, len);
  297. sha256_final(&ctx, digest);
  298. }
  299. void sha256_init(sha256_ctx *ctx)
  300. {
  301. #ifndef UNROLL_LOOPS
  302. int i;
  303. for (i = 0; i < 8; i++) {
  304. ctx->h[i] = sha256_h0[i];
  305. }
  306. #else
  307. ctx->h[0] = sha256_h0[0]; ctx->h[1] = sha256_h0[1];
  308. ctx->h[2] = sha256_h0[2]; ctx->h[3] = sha256_h0[3];
  309. ctx->h[4] = sha256_h0[4]; ctx->h[5] = sha256_h0[5];
  310. ctx->h[6] = sha256_h0[6]; ctx->h[7] = sha256_h0[7];
  311. #endif /* !UNROLL_LOOPS */
  312. ctx->len = 0;
  313. ctx->tot_len = 0;
  314. }
  315. void sha256_update(sha256_ctx *ctx, const unsigned char *message,
  316. unsigned int len)
  317. {
  318. unsigned int block_nb;
  319. unsigned int new_len, rem_len, tmp_len;
  320. const unsigned char *shifted_message;
  321. tmp_len = SHA256_BLOCK_SIZE - ctx->len;
  322. rem_len = len < tmp_len ? len : tmp_len;
  323. memcpy(&ctx->block[ctx->len], message, rem_len);
  324. if (ctx->len + len < SHA256_BLOCK_SIZE) {
  325. ctx->len += len;
  326. return;
  327. }
  328. new_len = len - rem_len;
  329. block_nb = new_len / SHA256_BLOCK_SIZE;
  330. shifted_message = message + rem_len;
  331. sha256_transf(ctx, ctx->block, 1);
  332. sha256_transf(ctx, shifted_message, block_nb);
  333. rem_len = new_len % SHA256_BLOCK_SIZE;
  334. memcpy(ctx->block, &shifted_message[block_nb << 6],
  335. rem_len);
  336. ctx->len = rem_len;
  337. ctx->tot_len += (block_nb + 1) << 6;
  338. }
  339. void sha256_final(sha256_ctx *ctx, unsigned char *digest)
  340. {
  341. unsigned int block_nb;
  342. unsigned int pm_len;
  343. unsigned int len_b;
  344. #ifndef UNROLL_LOOPS
  345. int i;
  346. #endif
  347. block_nb = (1 + ((SHA256_BLOCK_SIZE - 9)
  348. < (ctx->len % SHA256_BLOCK_SIZE)));
  349. len_b = (ctx->tot_len + ctx->len) << 3;
  350. pm_len = block_nb << 6;
  351. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  352. ctx->block[ctx->len] = 0x80;
  353. UNPACK32(len_b, ctx->block + pm_len - 4);
  354. sha256_transf(ctx, ctx->block, block_nb);
  355. #ifndef UNROLL_LOOPS
  356. for (i = 0 ; i < 8; i++) {
  357. UNPACK32(ctx->h[i], &digest[i << 2]);
  358. }
  359. #else
  360. UNPACK32(ctx->h[0], &digest[ 0]);
  361. UNPACK32(ctx->h[1], &digest[ 4]);
  362. UNPACK32(ctx->h[2], &digest[ 8]);
  363. UNPACK32(ctx->h[3], &digest[12]);
  364. UNPACK32(ctx->h[4], &digest[16]);
  365. UNPACK32(ctx->h[5], &digest[20]);
  366. UNPACK32(ctx->h[6], &digest[24]);
  367. UNPACK32(ctx->h[7], &digest[28]);
  368. #endif /* !UNROLL_LOOPS */
  369. }
  370. /* SHA-512 functions */
  371. void sha512_transf(sha512_ctx *ctx, const unsigned char *message,
  372. unsigned int block_nb)
  373. {
  374. uint64 w[80];
  375. uint64 wv[8];
  376. uint64 t1, t2;
  377. const unsigned char *sub_block;
  378. int i, j;
  379. for (i = 0; i < (int) block_nb; i++) {
  380. sub_block = message + (i << 7);
  381. #ifndef UNROLL_LOOPS
  382. for (j = 0; j < 16; j++) {
  383. PACK64(&sub_block[j << 3], &w[j]);
  384. }
  385. for (j = 16; j < 80; j++) {
  386. SHA512_SCR(j);
  387. }
  388. for (j = 0; j < 8; j++) {
  389. wv[j] = ctx->h[j];
  390. }
  391. for (j = 0; j < 80; j++) {
  392. t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
  393. + sha512_k[j] + w[j];
  394. t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
  395. wv[7] = wv[6];
  396. wv[6] = wv[5];
  397. wv[5] = wv[4];
  398. wv[4] = wv[3] + t1;
  399. wv[3] = wv[2];
  400. wv[2] = wv[1];
  401. wv[1] = wv[0];
  402. wv[0] = t1 + t2;
  403. }
  404. for (j = 0; j < 8; j++) {
  405. ctx->h[j] += wv[j];
  406. }
  407. #else
  408. PACK64(&sub_block[ 0], &w[ 0]); PACK64(&sub_block[ 8], &w[ 1]);
  409. PACK64(&sub_block[ 16], &w[ 2]); PACK64(&sub_block[ 24], &w[ 3]);
  410. PACK64(&sub_block[ 32], &w[ 4]); PACK64(&sub_block[ 40], &w[ 5]);
  411. PACK64(&sub_block[ 48], &w[ 6]); PACK64(&sub_block[ 56], &w[ 7]);
  412. PACK64(&sub_block[ 64], &w[ 8]); PACK64(&sub_block[ 72], &w[ 9]);
  413. PACK64(&sub_block[ 80], &w[10]); PACK64(&sub_block[ 88], &w[11]);
  414. PACK64(&sub_block[ 96], &w[12]); PACK64(&sub_block[104], &w[13]);
  415. PACK64(&sub_block[112], &w[14]); PACK64(&sub_block[120], &w[15]);
  416. SHA512_SCR(16); SHA512_SCR(17); SHA512_SCR(18); SHA512_SCR(19);
  417. SHA512_SCR(20); SHA512_SCR(21); SHA512_SCR(22); SHA512_SCR(23);
  418. SHA512_SCR(24); SHA512_SCR(25); SHA512_SCR(26); SHA512_SCR(27);
  419. SHA512_SCR(28); SHA512_SCR(29); SHA512_SCR(30); SHA512_SCR(31);
  420. SHA512_SCR(32); SHA512_SCR(33); SHA512_SCR(34); SHA512_SCR(35);
  421. SHA512_SCR(36); SHA512_SCR(37); SHA512_SCR(38); SHA512_SCR(39);
  422. SHA512_SCR(40); SHA512_SCR(41); SHA512_SCR(42); SHA512_SCR(43);
  423. SHA512_SCR(44); SHA512_SCR(45); SHA512_SCR(46); SHA512_SCR(47);
  424. SHA512_SCR(48); SHA512_SCR(49); SHA512_SCR(50); SHA512_SCR(51);
  425. SHA512_SCR(52); SHA512_SCR(53); SHA512_SCR(54); SHA512_SCR(55);
  426. SHA512_SCR(56); SHA512_SCR(57); SHA512_SCR(58); SHA512_SCR(59);
  427. SHA512_SCR(60); SHA512_SCR(61); SHA512_SCR(62); SHA512_SCR(63);
  428. SHA512_SCR(64); SHA512_SCR(65); SHA512_SCR(66); SHA512_SCR(67);
  429. SHA512_SCR(68); SHA512_SCR(69); SHA512_SCR(70); SHA512_SCR(71);
  430. SHA512_SCR(72); SHA512_SCR(73); SHA512_SCR(74); SHA512_SCR(75);
  431. SHA512_SCR(76); SHA512_SCR(77); SHA512_SCR(78); SHA512_SCR(79);
  432. wv[0] = ctx->h[0]; wv[1] = ctx->h[1];
  433. wv[2] = ctx->h[2]; wv[3] = ctx->h[3];
  434. wv[4] = ctx->h[4]; wv[5] = ctx->h[5];
  435. wv[6] = ctx->h[6]; wv[7] = ctx->h[7];
  436. j = 0;
  437. do {
  438. SHA512_EXP(0,1,2,3,4,5,6,7,j); j++;
  439. SHA512_EXP(7,0,1,2,3,4,5,6,j); j++;
  440. SHA512_EXP(6,7,0,1,2,3,4,5,j); j++;
  441. SHA512_EXP(5,6,7,0,1,2,3,4,j); j++;
  442. SHA512_EXP(4,5,6,7,0,1,2,3,j); j++;
  443. SHA512_EXP(3,4,5,6,7,0,1,2,j); j++;
  444. SHA512_EXP(2,3,4,5,6,7,0,1,j); j++;
  445. SHA512_EXP(1,2,3,4,5,6,7,0,j); j++;
  446. } while (j < 80);
  447. ctx->h[0] += wv[0]; ctx->h[1] += wv[1];
  448. ctx->h[2] += wv[2]; ctx->h[3] += wv[3];
  449. ctx->h[4] += wv[4]; ctx->h[5] += wv[5];
  450. ctx->h[6] += wv[6]; ctx->h[7] += wv[7];
  451. #endif /* !UNROLL_LOOPS */
  452. }
  453. }
  454. void sha512(const unsigned char *message, unsigned int len,
  455. unsigned char *digest)
  456. {
  457. sha512_ctx ctx;
  458. sha512_init(&ctx);
  459. sha512_update(&ctx, message, len);
  460. sha512_final(&ctx, digest);
  461. }
  462. void sha512_init(sha512_ctx *ctx)
  463. {
  464. #ifndef UNROLL_LOOPS
  465. int i;
  466. for (i = 0; i < 8; i++) {
  467. ctx->h[i] = sha512_h0[i];
  468. }
  469. #else
  470. ctx->h[0] = sha512_h0[0]; ctx->h[1] = sha512_h0[1];
  471. ctx->h[2] = sha512_h0[2]; ctx->h[3] = sha512_h0[3];
  472. ctx->h[4] = sha512_h0[4]; ctx->h[5] = sha512_h0[5];
  473. ctx->h[6] = sha512_h0[6]; ctx->h[7] = sha512_h0[7];
  474. #endif /* !UNROLL_LOOPS */
  475. ctx->len = 0;
  476. ctx->tot_len = 0;
  477. }
  478. void sha512_update(sha512_ctx *ctx, const unsigned char *message,
  479. unsigned int len)
  480. {
  481. unsigned int block_nb;
  482. unsigned int new_len, rem_len, tmp_len;
  483. const unsigned char *shifted_message;
  484. tmp_len = SHA512_BLOCK_SIZE - ctx->len;
  485. rem_len = len < tmp_len ? len : tmp_len;
  486. memcpy(&ctx->block[ctx->len], message, rem_len);
  487. if (ctx->len + len < SHA512_BLOCK_SIZE) {
  488. ctx->len += len;
  489. return;
  490. }
  491. new_len = len - rem_len;
  492. block_nb = new_len / SHA512_BLOCK_SIZE;
  493. shifted_message = message + rem_len;
  494. sha512_transf(ctx, ctx->block, 1);
  495. sha512_transf(ctx, shifted_message, block_nb);
  496. rem_len = new_len % SHA512_BLOCK_SIZE;
  497. memcpy(ctx->block, &shifted_message[block_nb << 7],
  498. rem_len);
  499. ctx->len = rem_len;
  500. ctx->tot_len += (block_nb + 1) << 7;
  501. }
  502. void sha512_final(sha512_ctx *ctx, unsigned char *digest)
  503. {
  504. unsigned int block_nb;
  505. unsigned int pm_len;
  506. unsigned int len_b;
  507. #ifndef UNROLL_LOOPS
  508. int i;
  509. #endif
  510. block_nb = 1 + ((SHA512_BLOCK_SIZE - 17)
  511. < (ctx->len % SHA512_BLOCK_SIZE));
  512. len_b = (ctx->tot_len + ctx->len) << 3;
  513. pm_len = block_nb << 7;
  514. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  515. ctx->block[ctx->len] = 0x80;
  516. UNPACK32(len_b, ctx->block + pm_len - 4);
  517. sha512_transf(ctx, ctx->block, block_nb);
  518. #ifndef UNROLL_LOOPS
  519. for (i = 0 ; i < 8; i++) {
  520. UNPACK64(ctx->h[i], &digest[i << 3]);
  521. }
  522. #else
  523. UNPACK64(ctx->h[0], &digest[ 0]);
  524. UNPACK64(ctx->h[1], &digest[ 8]);
  525. UNPACK64(ctx->h[2], &digest[16]);
  526. UNPACK64(ctx->h[3], &digest[24]);
  527. UNPACK64(ctx->h[4], &digest[32]);
  528. UNPACK64(ctx->h[5], &digest[40]);
  529. UNPACK64(ctx->h[6], &digest[48]);
  530. UNPACK64(ctx->h[7], &digest[56]);
  531. #endif /* !UNROLL_LOOPS */
  532. }
  533. /* SHA-384 functions */
  534. void sha384(const unsigned char *message, unsigned int len,
  535. unsigned char *digest)
  536. {
  537. sha384_ctx ctx;
  538. sha384_init(&ctx);
  539. sha384_update(&ctx, message, len);
  540. sha384_final(&ctx, digest);
  541. }
  542. void sha384_init(sha384_ctx *ctx)
  543. {
  544. #ifndef UNROLL_LOOPS
  545. int i;
  546. for (i = 0; i < 8; i++) {
  547. ctx->h[i] = sha384_h0[i];
  548. }
  549. #else
  550. ctx->h[0] = sha384_h0[0]; ctx->h[1] = sha384_h0[1];
  551. ctx->h[2] = sha384_h0[2]; ctx->h[3] = sha384_h0[3];
  552. ctx->h[4] = sha384_h0[4]; ctx->h[5] = sha384_h0[5];
  553. ctx->h[6] = sha384_h0[6]; ctx->h[7] = sha384_h0[7];
  554. #endif /* !UNROLL_LOOPS */
  555. ctx->len = 0;
  556. ctx->tot_len = 0;
  557. }
  558. void sha384_update(sha384_ctx *ctx, const unsigned char *message,
  559. unsigned int len)
  560. {
  561. unsigned int block_nb;
  562. unsigned int new_len, rem_len, tmp_len;
  563. const unsigned char *shifted_message;
  564. tmp_len = SHA384_BLOCK_SIZE - ctx->len;
  565. rem_len = len < tmp_len ? len : tmp_len;
  566. memcpy(&ctx->block[ctx->len], message, rem_len);
  567. if (ctx->len + len < SHA384_BLOCK_SIZE) {
  568. ctx->len += len;
  569. return;
  570. }
  571. new_len = len - rem_len;
  572. block_nb = new_len / SHA384_BLOCK_SIZE;
  573. shifted_message = message + rem_len;
  574. sha512_transf(ctx, ctx->block, 1);
  575. sha512_transf(ctx, shifted_message, block_nb);
  576. rem_len = new_len % SHA384_BLOCK_SIZE;
  577. memcpy(ctx->block, &shifted_message[block_nb << 7],
  578. rem_len);
  579. ctx->len = rem_len;
  580. ctx->tot_len += (block_nb + 1) << 7;
  581. }
  582. void sha384_final(sha384_ctx *ctx, unsigned char *digest)
  583. {
  584. unsigned int block_nb;
  585. unsigned int pm_len;
  586. unsigned int len_b;
  587. #ifndef UNROLL_LOOPS
  588. int i;
  589. #endif
  590. block_nb = (1 + ((SHA384_BLOCK_SIZE - 17)
  591. < (ctx->len % SHA384_BLOCK_SIZE)));
  592. len_b = (ctx->tot_len + ctx->len) << 3;
  593. pm_len = block_nb << 7;
  594. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  595. ctx->block[ctx->len] = 0x80;
  596. UNPACK32(len_b, ctx->block + pm_len - 4);
  597. sha512_transf(ctx, ctx->block, block_nb);
  598. #ifndef UNROLL_LOOPS
  599. for (i = 0 ; i < 6; i++) {
  600. UNPACK64(ctx->h[i], &digest[i << 3]);
  601. }
  602. #else
  603. UNPACK64(ctx->h[0], &digest[ 0]);
  604. UNPACK64(ctx->h[1], &digest[ 8]);
  605. UNPACK64(ctx->h[2], &digest[16]);
  606. UNPACK64(ctx->h[3], &digest[24]);
  607. UNPACK64(ctx->h[4], &digest[32]);
  608. UNPACK64(ctx->h[5], &digest[40]);
  609. #endif /* !UNROLL_LOOPS */
  610. }
  611. /* SHA-224 functions */
  612. void sha224(const unsigned char *message, unsigned int len,
  613. unsigned char *digest)
  614. {
  615. sha224_ctx ctx;
  616. sha224_init(&ctx);
  617. sha224_update(&ctx, message, len);
  618. sha224_final(&ctx, digest);
  619. }
  620. void sha224_init(sha224_ctx *ctx)
  621. {
  622. #ifndef UNROLL_LOOPS
  623. int i;
  624. for (i = 0; i < 8; i++) {
  625. ctx->h[i] = sha224_h0[i];
  626. }
  627. #else
  628. ctx->h[0] = sha224_h0[0]; ctx->h[1] = sha224_h0[1];
  629. ctx->h[2] = sha224_h0[2]; ctx->h[3] = sha224_h0[3];
  630. ctx->h[4] = sha224_h0[4]; ctx->h[5] = sha224_h0[5];
  631. ctx->h[6] = sha224_h0[6]; ctx->h[7] = sha224_h0[7];
  632. #endif /* !UNROLL_LOOPS */
  633. ctx->len = 0;
  634. ctx->tot_len = 0;
  635. }
  636. void sha224_update(sha224_ctx *ctx, const unsigned char *message,
  637. unsigned int len)
  638. {
  639. unsigned int block_nb;
  640. unsigned int new_len, rem_len, tmp_len;
  641. const unsigned char *shifted_message;
  642. tmp_len = SHA224_BLOCK_SIZE - ctx->len;
  643. rem_len = len < tmp_len ? len : tmp_len;
  644. memcpy(&ctx->block[ctx->len], message, rem_len);
  645. if (ctx->len + len < SHA224_BLOCK_SIZE) {
  646. ctx->len += len;
  647. return;
  648. }
  649. new_len = len - rem_len;
  650. block_nb = new_len / SHA224_BLOCK_SIZE;
  651. shifted_message = message + rem_len;
  652. sha256_transf(ctx, ctx->block, 1);
  653. sha256_transf(ctx, shifted_message, block_nb);
  654. rem_len = new_len % SHA224_BLOCK_SIZE;
  655. memcpy(ctx->block, &shifted_message[block_nb << 6],
  656. rem_len);
  657. ctx->len = rem_len;
  658. ctx->tot_len += (block_nb + 1) << 6;
  659. }
  660. void sha224_final(sha224_ctx *ctx, unsigned char *digest)
  661. {
  662. unsigned int block_nb;
  663. unsigned int pm_len;
  664. unsigned int len_b;
  665. #ifndef UNROLL_LOOPS
  666. int i;
  667. #endif
  668. block_nb = (1 + ((SHA224_BLOCK_SIZE - 9)
  669. < (ctx->len % SHA224_BLOCK_SIZE)));
  670. len_b = (ctx->tot_len + ctx->len) << 3;
  671. pm_len = block_nb << 6;
  672. memset(ctx->block + ctx->len, 0, pm_len - ctx->len);
  673. ctx->block[ctx->len] = 0x80;
  674. UNPACK32(len_b, ctx->block + pm_len - 4);
  675. sha256_transf(ctx, ctx->block, block_nb);
  676. #ifndef UNROLL_LOOPS
  677. for (i = 0 ; i < 7; i++) {
  678. UNPACK32(ctx->h[i], &digest[i << 2]);
  679. }
  680. #else
  681. UNPACK32(ctx->h[0], &digest[ 0]);
  682. UNPACK32(ctx->h[1], &digest[ 4]);
  683. UNPACK32(ctx->h[2], &digest[ 8]);
  684. UNPACK32(ctx->h[3], &digest[12]);
  685. UNPACK32(ctx->h[4], &digest[16]);
  686. UNPACK32(ctx->h[5], &digest[20]);
  687. UNPACK32(ctx->h[6], &digest[24]);
  688. #endif /* !UNROLL_LOOPS */
  689. }
  690. #ifdef TEST_VECTORS
  691. /* FIPS 180-2 Validation tests */
  692. #include <stdio.h>
  693. #include <stdlib.h>
  694. void test(const unsigned char *vector, unsigned char *digest,
  695. unsigned int digest_size)
  696. {
  697. unsigned char output[2 * SHA512_DIGEST_SIZE + 1];
  698. int i;
  699. output[2 * digest_size] = '\0';
  700. for (i = 0; i < (int) digest_size ; i++) {
  701. sprintf((char *) output + 2 * i, "%02x", digest[i]);
  702. }
  703. printf("H: %s\n", output);
  704. if (strcmp((char *) vector, (char *) output)) {
  705. fprintf(stderr, "Test failed.\n");
  706. exit(EXIT_FAILURE);
  707. }
  708. }
  709. int main()
  710. {
  711. static const unsigned char *vectors[4][3] =
  712. { /* SHA-224 */
  713. {
  714. "23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7",
  715. "75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525",
  716. "20794655980c91d8bbb4c1ea97618a4bf03f42581948b2ee4ee7ad67",
  717. },
  718. /* SHA-256 */
  719. {
  720. "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad",
  721. "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1",
  722. "cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0",
  723. },
  724. /* SHA-384 */
  725. {
  726. "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed"
  727. "8086072ba1e7cc2358baeca134c825a7",
  728. "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712"
  729. "fcc7c71a557e2db966c3e9fa91746039",
  730. "9d0e1809716474cb086e834e310a4a1ced149e9c00f248527972cec5704c2a5b"
  731. "07b8b3dc38ecc4ebae97ddd87f3d8985",
  732. },
  733. /* SHA-512 */
  734. {
  735. "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
  736. "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f",
  737. "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
  738. "501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909",
  739. "e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
  740. "de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b"
  741. }
  742. };
  743. static const unsigned char message1[] = "abc";
  744. static const unsigned char message2a[] = "abcdbcdecdefdefgefghfghighijhi"
  745. "jkijkljklmklmnlmnomnopnopq";
  746. static const unsigned char message2b[] =
  747. "abcdefghbcdefghicdefghijdefghijkefghij"
  748. "klfghijklmghijklmnhijklmnoijklmnopjklm"
  749. "nopqklmnopqrlmnopqrsmnopqrstnopqrstu";
  750. unsigned char *message3;
  751. unsigned int message3_len = 1000000;
  752. unsigned char digest[SHA512_DIGEST_SIZE];
  753. message3 = malloc(message3_len);
  754. if (message3 == NULL) {
  755. fprintf(stderr, "Can't allocate memory\n");
  756. return -1;
  757. }
  758. memset(message3, 'a', message3_len);
  759. printf("SHA-2 FIPS 180-2 Validation tests\n\n");
  760. printf("SHA-224 Test vectors\n");
  761. sha224(message1, strlen((char *) message1), digest);
  762. test(vectors[0][0], digest, SHA224_DIGEST_SIZE);
  763. sha224(message2a, strlen((char *) message2a), digest);
  764. test(vectors[0][1], digest, SHA224_DIGEST_SIZE);
  765. sha224(message3, message3_len, digest);
  766. test(vectors[0][2], digest, SHA224_DIGEST_SIZE);
  767. printf("\n");
  768. printf("SHA-256 Test vectors\n");
  769. sha256(message1, strlen((char *) message1), digest);
  770. test(vectors[1][0], digest, SHA256_DIGEST_SIZE);
  771. sha256(message2a, strlen((char *) message2a), digest);
  772. test(vectors[1][1], digest, SHA256_DIGEST_SIZE);
  773. sha256(message3, message3_len, digest);
  774. test(vectors[1][2], digest, SHA256_DIGEST_SIZE);
  775. printf("\n");
  776. printf("SHA-384 Test vectors\n");
  777. sha384(message1, strlen((char *) message1), digest);
  778. test(vectors[2][0], digest, SHA384_DIGEST_SIZE);
  779. sha384(message2b, strlen((char *) message2b), digest);
  780. test(vectors[2][1], digest, SHA384_DIGEST_SIZE);
  781. sha384(message3, message3_len, digest);
  782. test(vectors[2][2], digest, SHA384_DIGEST_SIZE);
  783. printf("\n");
  784. printf("SHA-512 Test vectors\n");
  785. sha512(message1, strlen((char *) message1), digest);
  786. test(vectors[3][0], digest, SHA512_DIGEST_SIZE);
  787. sha512(message2b, strlen((char *) message2b), digest);
  788. test(vectors[3][1], digest, SHA512_DIGEST_SIZE);
  789. sha512(message3, message3_len, digest);
  790. test(vectors[3][2], digest, SHA512_DIGEST_SIZE);
  791. printf("\n");
  792. printf("All tests passed.\n");
  793. return 0;
  794. }
  795. #endif /* TEST_VECTORS */