123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779 |
- /*-------------------------------------------------------------------------
- *
- * nbtree.h
- * header file for postgres btree access method implementation.
- *
- *
- * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
- * Portions Copyright (c) 1994, Regents of the University of California
- *
- * src/include/access/nbtree.h
- *
- *-------------------------------------------------------------------------
- */
- #ifndef NBTREE_H
- #define NBTREE_H
- #include "access/amapi.h"
- #include "access/itup.h"
- #include "access/sdir.h"
- #include "access/xlogreader.h"
- #include "catalog/pg_index.h"
- #include "lib/stringinfo.h"
- #include "storage/bufmgr.h"
- /* There's room for a 16-bit vacuum cycle ID in BTPageOpaqueData */
- typedef uint16 BTCycleId;
- /*
- * BTPageOpaqueData -- At the end of every page, we store a pointer
- * to both siblings in the tree. This is used to do forward/backward
- * index scans. The next-page link is also critical for recovery when
- * a search has navigated to the wrong page due to concurrent page splits
- * or deletions; see src/backend/access/nbtree/README for more info.
- *
- * In addition, we store the page's btree level (counting upwards from
- * zero at a leaf page) as well as some flag bits indicating the page type
- * and status. If the page is deleted, we replace the level with the
- * next-transaction-ID value indicating when it is safe to reclaim the page.
- *
- * We also store a "vacuum cycle ID". When a page is split while VACUUM is
- * processing the index, a nonzero value associated with the VACUUM run is
- * stored into both halves of the split page. (If VACUUM is not running,
- * both pages receive zero cycleids.) This allows VACUUM to detect whether
- * a page was split since it started, with a small probability of false match
- * if the page was last split some exact multiple of MAX_BT_CYCLE_ID VACUUMs
- * ago. Also, during a split, the BTP_SPLIT_END flag is cleared in the left
- * (original) page, and set in the right page, but only if the next page
- * to its right has a different cycleid.
- *
- * NOTE: the BTP_LEAF flag bit is redundant since level==0 could be tested
- * instead.
- */
- typedef struct BTPageOpaqueData
- {
- BlockNumber btpo_prev; /* left sibling, or P_NONE if leftmost */
- BlockNumber btpo_next; /* right sibling, or P_NONE if rightmost */
- union
- {
- uint32 level; /* tree level --- zero for leaf pages */
- TransactionId xact; /* next transaction ID, if deleted */
- } btpo;
- uint16 btpo_flags; /* flag bits, see below */
- BTCycleId btpo_cycleid; /* vacuum cycle ID of latest split */
- } BTPageOpaqueData;
- typedef BTPageOpaqueData *BTPageOpaque;
- /* Bits defined in btpo_flags */
- #define BTP_LEAF (1 << 0) /* leaf page, i.e. not internal page */
- #define BTP_ROOT (1 << 1) /* root page (has no parent) */
- #define BTP_DELETED (1 << 2) /* page has been deleted from tree */
- #define BTP_META (1 << 3) /* meta-page */
- #define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */
- #define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */
- #define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DEAD tuples */
- #define BTP_INCOMPLETE_SPLIT (1 << 7) /* right sibling's downlink is missing */
- /*
- * The max allowed value of a cycle ID is a bit less than 64K. This is
- * for convenience of pg_filedump and similar utilities: we want to use
- * the last 2 bytes of special space as an index type indicator, and
- * restricting cycle ID lets btree use that space for vacuum cycle IDs
- * while still allowing index type to be identified.
- */
- #define MAX_BT_CYCLE_ID 0xFF7F
- /*
- * The Meta page is always the first page in the btree index.
- * Its primary purpose is to point to the location of the btree root page.
- * We also point to the "fast" root, which is the current effective root;
- * see README for discussion.
- */
- typedef struct BTMetaPageData
- {
- uint32 btm_magic; /* should contain BTREE_MAGIC */
- uint32 btm_version; /* should contain BTREE_VERSION */
- BlockNumber btm_root; /* current root location */
- uint32 btm_level; /* tree level of the root page */
- BlockNumber btm_fastroot; /* current "fast" root location */
- uint32 btm_fastlevel; /* tree level of the "fast" root page */
- } BTMetaPageData;
- #define BTPageGetMeta(p) \
- ((BTMetaPageData *) PageGetContents(p))
- #define BTREE_METAPAGE 0 /* first page is meta */
- #define BTREE_MAGIC 0x053162 /* magic number of btree pages */
- #define BTREE_VERSION 2 /* current version number */
- /*
- * Maximum size of a btree index entry, including its tuple header.
- *
- * We actually need to be able to fit three items on every page,
- * so restrict any one item to 1/3 the per-page available space.
- */
- #define BTMaxItemSize(page) \
- MAXALIGN_DOWN((PageGetPageSize(page) - \
- MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \
- MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
- /*
- * The leaf-page fillfactor defaults to 90% but is user-adjustable.
- * For pages above the leaf level, we use a fixed 70% fillfactor.
- * The fillfactor is applied during index build and when splitting
- * a rightmost page; when splitting non-rightmost pages we try to
- * divide the data equally.
- */
- #define BTREE_MIN_FILLFACTOR 10
- #define BTREE_DEFAULT_FILLFACTOR 90
- #define BTREE_NONLEAF_FILLFACTOR 70
- /*
- * Test whether two btree entries are "the same".
- *
- * Old comments:
- * In addition, we must guarantee that all tuples in the index are unique,
- * in order to satisfy some assumptions in Lehman and Yao. The way that we
- * do this is by generating a new OID for every insertion that we do in the
- * tree. This adds eight bytes to the size of btree index tuples. Note
- * that we do not use the OID as part of a composite key; the OID only
- * serves as a unique identifier for a given index tuple (logical position
- * within a page).
- *
- * New comments:
- * actually, we must guarantee that all tuples in A LEVEL
- * are unique, not in ALL INDEX. So, we can use the t_tid
- * as unique identifier for a given index tuple (logical position
- * within a level). - vadim 04/09/97
- */
- #define BTTidSame(i1, i2) \
- ( (i1).ip_blkid.bi_hi == (i2).ip_blkid.bi_hi && \
- (i1).ip_blkid.bi_lo == (i2).ip_blkid.bi_lo && \
- (i1).ip_posid == (i2).ip_posid )
- #define BTEntrySame(i1, i2) \
- BTTidSame((i1)->t_tid, (i2)->t_tid)
- /*
- * In general, the btree code tries to localize its knowledge about
- * page layout to a couple of routines. However, we need a special
- * value to indicate "no page number" in those places where we expect
- * page numbers. We can use zero for this because we never need to
- * make a pointer to the metadata page.
- */
- #define P_NONE 0
- /*
- * Macros to test whether a page is leftmost or rightmost on its tree level,
- * as well as other state info kept in the opaque data.
- */
- #define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
- #define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
- #define P_ISLEAF(opaque) ((opaque)->btpo_flags & BTP_LEAF)
- #define P_ISROOT(opaque) ((opaque)->btpo_flags & BTP_ROOT)
- #define P_ISDELETED(opaque) ((opaque)->btpo_flags & BTP_DELETED)
- #define P_ISHALFDEAD(opaque) ((opaque)->btpo_flags & BTP_HALF_DEAD)
- #define P_IGNORE(opaque) ((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD))
- #define P_HAS_GARBAGE(opaque) ((opaque)->btpo_flags & BTP_HAS_GARBAGE)
- #define P_INCOMPLETE_SPLIT(opaque) ((opaque)->btpo_flags & BTP_INCOMPLETE_SPLIT)
- /*
- * Lehman and Yao's algorithm requires a ``high key'' on every non-rightmost
- * page. The high key is not a data key, but gives info about what range of
- * keys is supposed to be on this page. The high key on a page is required
- * to be greater than or equal to any data key that appears on the page.
- * If we find ourselves trying to insert a key > high key, we know we need
- * to move right (this should only happen if the page was split since we
- * examined the parent page).
- *
- * Our insertion algorithm guarantees that we can use the initial least key
- * on our right sibling as the high key. Once a page is created, its high
- * key changes only if the page is split.
- *
- * On a non-rightmost page, the high key lives in item 1 and data items
- * start in item 2. Rightmost pages have no high key, so we store data
- * items beginning in item 1.
- */
- #define P_HIKEY ((OffsetNumber) 1)
- #define P_FIRSTKEY ((OffsetNumber) 2)
- #define P_FIRSTDATAKEY(opaque) (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY)
- /*
- * XLOG records for btree operations
- *
- * XLOG allows to store some information in high 4 bits of log
- * record xl_info field
- */
- #define XLOG_BTREE_INSERT_LEAF 0x00 /* add index tuple without split */
- #define XLOG_BTREE_INSERT_UPPER 0x10 /* same, on a non-leaf page */
- #define XLOG_BTREE_INSERT_META 0x20 /* same, plus update metapage */
- #define XLOG_BTREE_SPLIT_L 0x30 /* add index tuple with split */
- #define XLOG_BTREE_SPLIT_R 0x40 /* as above, new item on right */
- #define XLOG_BTREE_SPLIT_L_ROOT 0x50 /* add tuple with split of root */
- #define XLOG_BTREE_SPLIT_R_ROOT 0x60 /* as above, new item on right */
- #define XLOG_BTREE_DELETE 0x70 /* delete leaf index tuples for a page */
- #define XLOG_BTREE_UNLINK_PAGE 0x80 /* delete a half-dead page */
- #define XLOG_BTREE_UNLINK_PAGE_META 0x90 /* same, and update metapage */
- #define XLOG_BTREE_NEWROOT 0xA0 /* new root page */
- #define XLOG_BTREE_MARK_PAGE_HALFDEAD 0xB0 /* mark a leaf as half-dead */
- #define XLOG_BTREE_VACUUM 0xC0 /* delete entries on a page during
- * vacuum */
- #define XLOG_BTREE_REUSE_PAGE 0xD0 /* old page is about to be reused from
- * FSM */
- /*
- * All that we need to regenerate the meta-data page
- */
- typedef struct xl_btree_metadata
- {
- BlockNumber root;
- uint32 level;
- BlockNumber fastroot;
- uint32 fastlevel;
- } xl_btree_metadata;
- /*
- * This is what we need to know about simple (without split) insert.
- *
- * This data record is used for INSERT_LEAF, INSERT_UPPER, INSERT_META.
- * Note that INSERT_META implies it's not a leaf page.
- *
- * Backup Blk 0: original page (data contains the inserted tuple)
- * Backup Blk 1: child's left sibling, if INSERT_UPPER or INSERT_META
- * Backup Blk 2: xl_btree_metadata, if INSERT_META
- */
- typedef struct xl_btree_insert
- {
- OffsetNumber offnum;
- } xl_btree_insert;
- #define SizeOfBtreeInsert (offsetof(xl_btree_insert, offnum) + sizeof(OffsetNumber))
- /*
- * On insert with split, we save all the items going into the right sibling
- * so that we can restore it completely from the log record. This way takes
- * less xlog space than the normal approach, because if we did it standardly,
- * XLogInsert would almost always think the right page is new and store its
- * whole page image. The left page, however, is handled in the normal
- * incremental-update fashion.
- *
- * Note: the four XLOG_BTREE_SPLIT xl_info codes all use this data record.
- * The _L and _R variants indicate whether the inserted tuple went into the
- * left or right split page (and thus, whether newitemoff and the new item
- * are stored or not). The _ROOT variants indicate that we are splitting
- * the root page, and thus that a newroot record rather than an insert or
- * split record should follow. Note that a split record never carries a
- * metapage update --- we'll do that in the parent-level update.
- *
- * Backup Blk 0: original page / new left page
- *
- * The left page's data portion contains the new item, if it's the _L variant.
- * (In the _R variants, the new item is one of the right page's tuples.)
- * If level > 0, an IndexTuple representing the HIKEY of the left page
- * follows. We don't need this on leaf pages, because it's the same as the
- * leftmost key in the new right page.
- *
- * Backup Blk 1: new right page
- *
- * The right page's data portion contains the right page's tuples in the
- * form used by _bt_restore_page.
- *
- * Backup Blk 2: next block (orig page's rightlink), if any
- * Backup Blk 3: child's left sibling, if non-leaf split
- */
- typedef struct xl_btree_split
- {
- uint32 level; /* tree level of page being split */
- OffsetNumber firstright; /* first item moved to right page */
- OffsetNumber newitemoff; /* new item's offset (if placed on left page) */
- } xl_btree_split;
- #define SizeOfBtreeSplit (offsetof(xl_btree_split, newitemoff) + sizeof(OffsetNumber))
- /*
- * This is what we need to know about delete of individual leaf index tuples.
- * The WAL record can represent deletion of any number of index tuples on a
- * single index page when *not* executed by VACUUM.
- *
- * Backup Blk 0: index page
- */
- typedef struct xl_btree_delete
- {
- RelFileNode hnode; /* RelFileNode of the heap the index currently
- * points at */
- int nitems;
- /* TARGET OFFSET NUMBERS FOLLOW AT THE END */
- } xl_btree_delete;
- #define SizeOfBtreeDelete (offsetof(xl_btree_delete, nitems) + sizeof(int))
- /*
- * This is what we need to know about page reuse within btree.
- */
- typedef struct xl_btree_reuse_page
- {
- RelFileNode node;
- BlockNumber block;
- TransactionId latestRemovedXid;
- } xl_btree_reuse_page;
- #define SizeOfBtreeReusePage (sizeof(xl_btree_reuse_page))
- /*
- * This is what we need to know about vacuum of individual leaf index tuples.
- * The WAL record can represent deletion of any number of index tuples on a
- * single index page when executed by VACUUM.
- *
- * For MVCC scans, lastBlockVacuumed will be set to InvalidBlockNumber.
- * For a non-MVCC index scans there is an additional correctness requirement
- * for applying these changes during recovery, which is that we must do one
- * of these two things for every block in the index:
- * * lock the block for cleanup and apply any required changes
- * * EnsureBlockUnpinned()
- * The purpose of this is to ensure that no index scans started before we
- * finish scanning the index are still running by the time we begin to remove
- * heap tuples.
- *
- * Any changes to any one block are registered on just one WAL record. All
- * blocks that we need to run EnsureBlockUnpinned() are listed as a block range
- * starting from the last block vacuumed through until this one. Individual
- * block numbers aren't given.
- *
- * Note that the *last* WAL record in any vacuum of an index is allowed to
- * have a zero length array of offsets. Earlier records must have at least one.
- */
- typedef struct xl_btree_vacuum
- {
- BlockNumber lastBlockVacuumed;
- /* TARGET OFFSET NUMBERS FOLLOW */
- } xl_btree_vacuum;
- #define SizeOfBtreeVacuum (offsetof(xl_btree_vacuum, lastBlockVacuumed) + sizeof(BlockNumber))
- /*
- * This is what we need to know about marking an empty branch for deletion.
- * The target identifies the tuple removed from the parent page (note that we
- * remove this tuple's downlink and the *following* tuple's key). Note that
- * the leaf page is empty, so we don't need to store its content --- it is
- * just reinitialized during recovery using the rest of the fields.
- *
- * Backup Blk 0: leaf block
- * Backup Blk 1: top parent
- */
- typedef struct xl_btree_mark_page_halfdead
- {
- OffsetNumber poffset; /* deleted tuple id in parent page */
- /* information needed to recreate the leaf page: */
- BlockNumber leafblk; /* leaf block ultimately being deleted */
- BlockNumber leftblk; /* leaf block's left sibling, if any */
- BlockNumber rightblk; /* leaf block's right sibling */
- BlockNumber topparent; /* topmost internal page in the branch */
- } xl_btree_mark_page_halfdead;
- #define SizeOfBtreeMarkPageHalfDead (offsetof(xl_btree_mark_page_halfdead, topparent) + sizeof(BlockNumber))
- /*
- * This is what we need to know about deletion of a btree page. Note we do
- * not store any content for the deleted page --- it is just rewritten as empty
- * during recovery, apart from resetting the btpo.xact.
- *
- * Backup Blk 0: target block being deleted
- * Backup Blk 1: target block's left sibling, if any
- * Backup Blk 2: target block's right sibling
- * Backup Blk 3: leaf block (if different from target)
- * Backup Blk 4: metapage (if rightsib becomes new fast root)
- */
- typedef struct xl_btree_unlink_page
- {
- BlockNumber leftsib; /* target block's left sibling, if any */
- BlockNumber rightsib; /* target block's right sibling */
- /*
- * Information needed to recreate the leaf page, when target is an
- * internal page.
- */
- BlockNumber leafleftsib;
- BlockNumber leafrightsib;
- BlockNumber topparent; /* next child down in the branch */
- TransactionId btpo_xact; /* value of btpo.xact for use in recovery */
- /* xl_btree_metadata FOLLOWS IF XLOG_BTREE_UNLINK_PAGE_META */
- } xl_btree_unlink_page;
- #define SizeOfBtreeUnlinkPage (offsetof(xl_btree_unlink_page, btpo_xact) + sizeof(TransactionId))
- /*
- * New root log record. There are zero tuples if this is to establish an
- * empty root, or two if it is the result of splitting an old root.
- *
- * Note that although this implies rewriting the metadata page, we don't need
- * an xl_btree_metadata record --- the rootblk and level are sufficient.
- *
- * Backup Blk 0: new root page (2 tuples as payload, if splitting old root)
- * Backup Blk 1: left child (if splitting an old root)
- * Backup Blk 2: metapage
- */
- typedef struct xl_btree_newroot
- {
- BlockNumber rootblk; /* location of new root (redundant with blk 0) */
- uint32 level; /* its tree level */
- } xl_btree_newroot;
- #define SizeOfBtreeNewroot (offsetof(xl_btree_newroot, level) + sizeof(uint32))
- /*
- * Operator strategy numbers for B-tree have been moved to access/stratnum.h,
- * because many places need to use them in ScanKeyInit() calls.
- *
- * The strategy numbers are chosen so that we can commute them by
- * subtraction, thus:
- */
- #define BTCommuteStrategyNumber(strat) (BTMaxStrategyNumber + 1 - (strat))
- /*
- * When a new operator class is declared, we require that the user
- * supply us with an amproc procedure (BTORDER_PROC) for determining
- * whether, for two keys a and b, a < b, a = b, or a > b. This routine
- * must return < 0, 0, > 0, respectively, in these three cases. (It must
- * not return INT_MIN, since we may negate the result before using it.)
- *
- * To facilitate accelerated sorting, an operator class may choose to
- * offer a second procedure (BTSORTSUPPORT_PROC). For full details, see
- * src/include/utils/sortsupport.h.
- */
- #define BTORDER_PROC 1
- #define BTSORTSUPPORT_PROC 2
- #define BTNProcs 2
- /*
- * We need to be able to tell the difference between read and write
- * requests for pages, in order to do locking correctly.
- */
- #define BT_READ BUFFER_LOCK_SHARE
- #define BT_WRITE BUFFER_LOCK_EXCLUSIVE
- /*
- * BTStackData -- As we descend a tree, we push the (location, downlink)
- * pairs from internal pages onto a private stack. If we split a
- * leaf, we use this stack to walk back up the tree and insert data
- * into parent pages (and possibly to split them, too). Lehman and
- * Yao's update algorithm guarantees that under no circumstances can
- * our private stack give us an irredeemably bad picture up the tree.
- * Again, see the paper for details.
- */
- typedef struct BTStackData
- {
- BlockNumber bts_blkno;
- OffsetNumber bts_offset;
- IndexTupleData bts_btentry;
- struct BTStackData *bts_parent;
- } BTStackData;
- typedef BTStackData *BTStack;
- /*
- * BTScanOpaqueData is the btree-private state needed for an indexscan.
- * This consists of preprocessed scan keys (see _bt_preprocess_keys() for
- * details of the preprocessing), information about the current location
- * of the scan, and information about the marked location, if any. (We use
- * BTScanPosData to represent the data needed for each of current and marked
- * locations.) In addition we can remember some known-killed index entries
- * that must be marked before we can move off the current page.
- *
- * Index scans work a page at a time: we pin and read-lock the page, identify
- * all the matching items on the page and save them in BTScanPosData, then
- * release the read-lock while returning the items to the caller for
- * processing. This approach minimizes lock/unlock traffic. Note that we
- * keep the pin on the index page until the caller is done with all the items
- * (this is needed for VACUUM synchronization, see nbtree/README). When we
- * are ready to step to the next page, if the caller has told us any of the
- * items were killed, we re-lock the page to mark them killed, then unlock.
- * Finally we drop the pin and step to the next page in the appropriate
- * direction.
- *
- * If we are doing an index-only scan, we save the entire IndexTuple for each
- * matched item, otherwise only its heap TID and offset. The IndexTuples go
- * into a separate workspace array; each BTScanPosItem stores its tuple's
- * offset within that array.
- */
- typedef struct BTScanPosItem /* what we remember about each match */
- {
- ItemPointerData heapTid; /* TID of referenced heap item */
- OffsetNumber indexOffset; /* index item's location within page */
- LocationIndex tupleOffset; /* IndexTuple's offset in workspace, if any */
- } BTScanPosItem;
- typedef struct BTScanPosData
- {
- Buffer buf; /* if valid, the buffer is pinned */
- XLogRecPtr lsn; /* pos in the WAL stream when page was read */
- BlockNumber currPage; /* page referenced by items array */
- BlockNumber nextPage; /* page's right link when we scanned it */
- /*
- * moreLeft and moreRight track whether we think there may be matching
- * index entries to the left and right of the current page, respectively.
- * We can clear the appropriate one of these flags when _bt_checkkeys()
- * returns continuescan = false.
- */
- bool moreLeft;
- bool moreRight;
- /*
- * If we are doing an index-only scan, nextTupleOffset is the first free
- * location in the associated tuple storage workspace.
- */
- int nextTupleOffset;
- /*
- * The items array is always ordered in index order (ie, increasing
- * indexoffset). When scanning backwards it is convenient to fill the
- * array back-to-front, so we start at the last slot and fill downwards.
- * Hence we need both a first-valid-entry and a last-valid-entry counter.
- * itemIndex is a cursor showing which entry was last returned to caller.
- */
- int firstItem; /* first valid index in items[] */
- int lastItem; /* last valid index in items[] */
- int itemIndex; /* current index in items[] */
- BTScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */
- } BTScanPosData;
- typedef BTScanPosData *BTScanPos;
- #define BTScanPosIsPinned(scanpos) \
- ( \
- AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
- !BufferIsValid((scanpos).buf)), \
- BufferIsValid((scanpos).buf) \
- )
- #define BTScanPosUnpin(scanpos) \
- do { \
- ReleaseBuffer((scanpos).buf); \
- (scanpos).buf = InvalidBuffer; \
- } while (0)
- #define BTScanPosUnpinIfPinned(scanpos) \
- do { \
- if (BTScanPosIsPinned(scanpos)) \
- BTScanPosUnpin(scanpos); \
- } while (0)
- #define BTScanPosIsValid(scanpos) \
- ( \
- AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
- !BufferIsValid((scanpos).buf)), \
- BlockNumberIsValid((scanpos).currPage) \
- )
- #define BTScanPosInvalidate(scanpos) \
- do { \
- (scanpos).currPage = InvalidBlockNumber; \
- (scanpos).nextPage = InvalidBlockNumber; \
- (scanpos).buf = InvalidBuffer; \
- (scanpos).lsn = InvalidXLogRecPtr; \
- (scanpos).nextTupleOffset = 0; \
- } while (0);
- /* We need one of these for each equality-type SK_SEARCHARRAY scan key */
- typedef struct BTArrayKeyInfo
- {
- int scan_key; /* index of associated key in arrayKeyData */
- int cur_elem; /* index of current element in elem_values */
- int mark_elem; /* index of marked element in elem_values */
- int num_elems; /* number of elems in current array value */
- Datum *elem_values; /* array of num_elems Datums */
- } BTArrayKeyInfo;
- typedef struct BTScanOpaqueData
- {
- /* these fields are set by _bt_preprocess_keys(): */
- bool qual_ok; /* false if qual can never be satisfied */
- int numberOfKeys; /* number of preprocessed scan keys */
- ScanKey keyData; /* array of preprocessed scan keys */
- /* workspace for SK_SEARCHARRAY support */
- ScanKey arrayKeyData; /* modified copy of scan->keyData */
- int numArrayKeys; /* number of equality-type array keys (-1 if
- * there are any unsatisfiable array keys) */
- BTArrayKeyInfo *arrayKeys; /* info about each equality-type array key */
- MemoryContext arrayContext; /* scan-lifespan context for array data */
- /* info about killed items if any (killedItems is NULL if never used) */
- int *killedItems; /* currPos.items indexes of killed items */
- int numKilled; /* number of currently stored items */
- /*
- * If we are doing an index-only scan, these are the tuple storage
- * workspaces for the currPos and markPos respectively. Each is of size
- * BLCKSZ, so it can hold as much as a full page's worth of tuples.
- */
- char *currTuples; /* tuple storage for currPos */
- char *markTuples; /* tuple storage for markPos */
- /*
- * If the marked position is on the same page as current position, we
- * don't use markPos, but just keep the marked itemIndex in markItemIndex
- * (all the rest of currPos is valid for the mark position). Hence, to
- * determine if there is a mark, first look at markItemIndex, then at
- * markPos.
- */
- int markItemIndex; /* itemIndex, or -1 if not valid */
- /* keep these last in struct for efficiency */
- BTScanPosData currPos; /* current position data */
- BTScanPosData markPos; /* marked position, if any */
- } BTScanOpaqueData;
- typedef BTScanOpaqueData *BTScanOpaque;
- /*
- * We use some private sk_flags bits in preprocessed scan keys. We're allowed
- * to use bits 16-31 (see skey.h). The uppermost bits are copied from the
- * index's indoption[] array entry for the index attribute.
- */
- #define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
- #define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
- #define SK_BT_INDOPTION_SHIFT 24 /* must clear the above bits */
- #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT)
- #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT)
- /*
- * prototypes for functions in nbtree.c (external entry points for btree)
- */
- extern Datum bthandler(PG_FUNCTION_ARGS);
- extern IndexBuildResult *btbuild(Relation heap, Relation index,
- struct IndexInfo *indexInfo);
- extern void btbuildempty(Relation index);
- extern bool btinsert(Relation rel, Datum *values, bool *isnull,
- ItemPointer ht_ctid, Relation heapRel,
- IndexUniqueCheck checkUnique);
- extern IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys);
- extern bool btgettuple(IndexScanDesc scan, ScanDirection dir);
- extern int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
- extern void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
- ScanKey orderbys, int norderbys);
- extern void btendscan(IndexScanDesc scan);
- extern void btmarkpos(IndexScanDesc scan);
- extern void btrestrpos(IndexScanDesc scan);
- extern IndexBulkDeleteResult *btbulkdelete(IndexVacuumInfo *info,
- IndexBulkDeleteResult *stats,
- IndexBulkDeleteCallback callback,
- void *callback_state);
- extern IndexBulkDeleteResult *btvacuumcleanup(IndexVacuumInfo *info,
- IndexBulkDeleteResult *stats);
- extern bool btcanreturn(Relation index, int attno);
- /*
- * prototypes for functions in nbtinsert.c
- */
- extern bool _bt_doinsert(Relation rel, IndexTuple itup,
- IndexUniqueCheck checkUnique, Relation heapRel);
- extern Buffer _bt_getstackbuf(Relation rel, BTStack stack, int access);
- extern void _bt_finish_split(Relation rel, Buffer bbuf, BTStack stack);
- /*
- * prototypes for functions in nbtpage.c
- */
- extern void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level);
- extern Buffer _bt_getroot(Relation rel, int access);
- extern Buffer _bt_gettrueroot(Relation rel);
- extern int _bt_getrootheight(Relation rel);
- extern void _bt_checkpage(Relation rel, Buffer buf);
- extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
- extern Buffer _bt_relandgetbuf(Relation rel, Buffer obuf,
- BlockNumber blkno, int access);
- extern void _bt_relbuf(Relation rel, Buffer buf);
- extern void _bt_pageinit(Page page, Size size);
- extern bool _bt_page_recyclable(Page page);
- extern void _bt_delitems_delete(Relation rel, Buffer buf,
- OffsetNumber *itemnos, int nitems, Relation heapRel);
- extern void _bt_delitems_vacuum(Relation rel, Buffer buf,
- OffsetNumber *itemnos, int nitems,
- BlockNumber lastBlockVacuumed);
- extern int _bt_pagedel(Relation rel, Buffer buf);
- /*
- * prototypes for functions in nbtsearch.c
- */
- extern BTStack _bt_search(Relation rel,
- int keysz, ScanKey scankey, bool nextkey,
- Buffer *bufP, int access, Snapshot snapshot);
- extern Buffer _bt_moveright(Relation rel, Buffer buf, int keysz,
- ScanKey scankey, bool nextkey, bool forupdate, BTStack stack,
- int access, Snapshot snapshot);
- extern OffsetNumber _bt_binsrch(Relation rel, Buffer buf, int keysz,
- ScanKey scankey, bool nextkey);
- extern int32 _bt_compare(Relation rel, int keysz, ScanKey scankey,
- Page page, OffsetNumber offnum);
- extern bool _bt_first(IndexScanDesc scan, ScanDirection dir);
- extern bool _bt_next(IndexScanDesc scan, ScanDirection dir);
- extern Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost,
- Snapshot snapshot);
- /*
- * prototypes for functions in nbtutils.c
- */
- extern ScanKey _bt_mkscankey(Relation rel, IndexTuple itup);
- extern ScanKey _bt_mkscankey_nodata(Relation rel);
- extern void _bt_freeskey(ScanKey skey);
- extern void _bt_freestack(BTStack stack);
- extern void _bt_preprocess_array_keys(IndexScanDesc scan);
- extern void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir);
- extern bool _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir);
- extern void _bt_mark_array_keys(IndexScanDesc scan);
- extern void _bt_restore_array_keys(IndexScanDesc scan);
- extern void _bt_preprocess_keys(IndexScanDesc scan);
- extern IndexTuple _bt_checkkeys(IndexScanDesc scan,
- Page page, OffsetNumber offnum,
- ScanDirection dir, bool *continuescan);
- extern void _bt_killitems(IndexScanDesc scan);
- extern BTCycleId _bt_vacuum_cycleid(Relation rel);
- extern BTCycleId _bt_start_vacuum(Relation rel);
- extern void _bt_end_vacuum(Relation rel);
- extern void _bt_end_vacuum_callback(int code, Datum arg);
- extern Size BTreeShmemSize(void);
- extern void BTreeShmemInit(void);
- extern bytea *btoptions(Datum reloptions, bool validate);
- extern bool btproperty(Oid index_oid, int attno,
- IndexAMProperty prop, const char *propname,
- bool *res, bool *isnull);
- /*
- * prototypes for functions in nbtvalidate.c
- */
- extern bool btvalidate(Oid opclassoid);
- /*
- * prototypes for functions in nbtsort.c
- */
- typedef struct BTSpool BTSpool; /* opaque type known only within nbtsort.c */
- extern BTSpool *_bt_spoolinit(Relation heap, Relation index,
- bool isunique, bool isdead);
- extern void _bt_spooldestroy(BTSpool *btspool);
- extern void _bt_spool(BTSpool *btspool, ItemPointer self,
- Datum *values, bool *isnull);
- extern void _bt_leafbuild(BTSpool *btspool, BTSpool *spool2);
- /*
- * prototypes for functions in nbtxlog.c
- */
- extern void btree_redo(XLogReaderState *record);
- extern void btree_desc(StringInfo buf, XLogReaderState *record);
- extern const char *btree_identify(uint8 info);
- #endif /* NBTREE_H */
|